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Les Mathématiques, des outils pour les Sciences de la Terre 

 
 

D.
 A

MORE
SE

, p
ro

vis
oi

re



D. Amorese, unicaen, 17/10/22            2 

Cette page est laissée blanche volontairement  

D.
 A

MORE
SE

, p
ro

vis
oi

re



D. Amorese, unicaen, 17/10/22            3 

Introduction 
Au cours des cinq dernières décennies, l’utilisation des ordinateurs et des méthodes quantitatives dans tous les aspects des 
Sciences de la Terre a été croissante. Comme dans d’autres domaines scientifiques (Médecine, Biologie, ...), cette évolution se 
poursuit. Il est, par conséquent, essentiel que les géologues (ainsi que les géophysiciens et les géochimistes) soient considérés 
comme aussi compétents en matière de calcul que leurs collègues des autres sciences physiques. 
 
Ce petit livre a pour but d’enseigner des mathématiques simples et pratiques en utilisant des exemples géologiques, géophy-
siques et géochimiques pour illustrer les concepts mathématiques. Puisque mathématiques et informatique vont souvent de 
conserve en Sciences de la Terre, vous trouverez aussi sur des pages de ce livret quelques lignes de programmation en langage 
Python 3. 
 
D’après les connaissances scientifiques actuelles, il n’existe pas de chromosome qui détermine biologiquement si on sera bon 
ou mauvais en mathématiques. La fameuse "bosse" des mathématiques est un mythe néfaste. On ne nait pas bon ou mauvais 
en mathématiques : on le devient ! C’est comme dans le domaine sportif : on ne nait pas champion de course du 100 mètres. 
Dans les deux cas, il y a un secret pour réussir : les efforts ! Bien sûr, des personnes auront naturellement des neurones plus 
rapides ou des muscles plus résistants, mais pour réussir le sportif devra s’entraîner… Et le scientifique devra pratiquer des exer-
cices de mathématiques. Cela est d’autant plus vrai que les mathématiques sont comme une langue. Il y a un vocabulaire et une 
sorte de grammaire mathématiques que l’on ne peut maîtriser qu’à l’aide d’une pratique régulière. 
 
Comme partout, plus on fait des maths et plus on devient performant dans le domaine. "C’est dans l’effort que l’on trouve la 
satisfaction et non dans la réussite. Un plein effort est une pleine victoire" disait Gandhi. Par chance, il se trouve que bien souvent 
aussi lorsque l’on fournit des efforts, on réussit. Par analogie avec la pratique sportive, dans ce livret, les exercices seront dénom-
més « entrainements ». Les mots ou expressions qui sont soulignés sont définis dans un glossaire en fin de chapitre. 
 
Cet ouvrage a bénéficié du soutien, des conseils et des remarques de plusieurs collègues enseignants-chercheurs géophysi-
ciens, géologues ou physiciens auxquels va ma gratitude amicale. Ce sont en particulier Claude Jaupart de l’Institut de Physique 
du Globe de Paris, Marianne Font-Ertlen et Philippe Marie de l’Université de Caen Normandie. Grace à leurs commentaires, ce 
petit manuel est devenu plus exact et plus agréable à lire, en deux mots : « plus pédagogique ». 
 
En matière d’enseignement, Montaigne, le prince des philosophes, au XVIe siècle, disait : "Ce qui ne peut pas se faire par la 
raison, et par sagesse et habilité, ne se fait jamais par la force". Cela me pousse à penser qu’un enseignement supérieur qui 
serait bâti sur la contrainte serait contre-productif. Ainsi, nul besoin de contrôles de connaissance à répétition pour obtenir des 
étudiants un apprentissage régulier, puisque c’est l’adhésion et la contrainte volontaire qu’il faut rechercher. J’espère que ce 
livret y contribuera.   
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1 Socle mathématique 
Ce chapitre rappelle des notions de base en mathématique, notions sans lesquelles il s’avère difficile de réaliser des calculs 
scientifiques. 

� Les exposants 
Les puissances sont pratiques pour exprimer le calcul d’une surface (ou d’un volume). Ainsi, si votre chambre universitaire fait 4 
m de long et 4 m de large, on ne va pas écrire que sa surface vaut 4 x 4 = 16 m x m. On dira que la surface de la chambre vaut 
16 m2.  
Les règles : 

!!!" = !!#" 
	!
!

!"
$ = !!$" 

(!!)" = !!" 

ENTRAINEMENT N°1 (SOLUTION PAGE 51) 
5² x 5⁴ = ? 
(5²)⁴ = ? 
3² + 5⁴ = ? 
(To³)⁴ = ? avec To=10 

� La notation scientifique 
En Sciences de la Terre, on manipule parfois de grands nombres (par exemple, la masse de la Terre) et aussi de petits nombres 
(par exemple, la masse d’or présente dans un litre d’eau de mer). Ces valeurs peuvent nécessiter l’utilisation de la notation scien-
tifique (la touche "EXP" de votre calculatrice).  
Il y a un intérêt pratique à cette façon de faire : par exemple, écrire 0,00035-0,00005=0,0003 est possible, mais tout le monde 
conviendra que l’utilisation des puissances de 10 facilite l’écriture et réduit le risque d’erreurs : 3,5 x 10-4 - 0,5 x 10-4 = 3 x 10-4. 
Ainsi, on ne va pas oublier ou rajouter un zéro sans le vouloir. 

EXEMPLES :  
())) = ()%

()))) = ()&
 

L’exposant correspond au nombre de zéros. 
"Deux millions" sera transcrit 2 × 10! 

ENTRAINEMENT N°2 (SOLUTION PAGE 51) 
Exprimez les nombres suivants en notation scientifique : 
1000 = ? 
2000 = ? 
2500 = ? 
2523 = ? 
23 000 000 = ? 
7 milliards = ? 

EXEMPLES DE PETITS NOMBRES :  
). ))( = ()$%

). )))( = ()$&
 

Pour les petits nombres, le principe reste le même : L’exposant correspond au nombre de zéros. 

ENTRAINEMENT N°3 (SOLUTION PAGE 51) 
Exprimez les nombres suivants en notation scientifique : 
0.001 = ? 
0.002 = ? 
0.0025 = ? 
0.002523 = ? 
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0.0000023 = ? 

Lorsque l’on pratique des calculs, la règle de manipulation des nombres en notation scientifique consiste à toujours utiliser la 
même puissance de 10. Ainsi, 3 10-3 – 5 10-4 doit être écrit 3 10-3 – 0,5 10-3.  Ce qui finalement aboutit à 2,5 10-3. 

ENTRAINEMENT N°4 (SOLUTION PAGE 51) 
Évaluez les expressions suivantes : 
2,5 109 + 1,5 109 = ? 
2,5 109 + 1,5 108 = ? 
2,5 109 + 1,5 1010 = ? 
La masse de la Terre vaut 5,95 1024 kg.  
Son volume est de 1,08 1021 m³.  
Calculez sa masse volumique moyenne (rapport masse/volume). 
Technique : il faut regrouper les puissances de 10. 

Attention avec votre calculatrice ! : 3 10³ va être saisi de la façon suivante : 3 EXP 3 et en aucun cas 3 x 10 EXP 3 

� La cohérence des unités 
Lors des calculs, les unités doivent rester cohérentes. On veillera par exemple à ne pas mélanger les mètres avec les centimètres. 
On peut faire les calculs en convertissant tout en mètres ou en convertissant tout en centimètres, mais on ne mélange pas les 
deux !  

EXEMPLE :  
Il est possible de déterminer la masse de la Terre à partir de l’accélération moyenne de la pesanteur mesurée à la surface de la 
Terre 

+' =
,̄.'

(

/
 

Avec rT, le rayon terrestre moyen (6371 km), g, l’accélération moyenne de la pesanteur (9,81 m s-2) et G, la constante de la gravi-
tation universelle (6,67 10-11 m³ kg-1 s-2) 

Le résultat du calcul est :  +' =
),+,×./%0, ,2"3

#

/,/0 ,2$%%
=

),+,×/%0,#,2&

/,/0 ,2$%%
=

),+,×/%0,#,2%'

/,/0
= 0, 23 ()(&5,		 

 
Le choix a été fait de réaliser le calcul avec les unités du Système International en transformant les kilomètres en mètres pour la 
valeur du rayon terrestre. Il a fallu multiplier 6371 par 10³ (1000), puisqu’un kilomètre contient 1000 mètres. 

ENTRAINEMENT N°5 (SOLUTION PAGE 51) 
Une constante de sédimentation k vaut 1000 an m-1. Quel est l’âge d’un sédiment qui se trouve à 30 cm de profondeur en 
utilisant la fonction Age = k x profondeur ? 

ENTRAINEMENT N°6 (SOLUTION PAGE 51) 
Si une rivière contient C=4,2 mg de silice par litre, sachant que son débit moyen vaut Q=9,3 m³/s et que l’on peut utiliser la 
fonction Flux géochimique = Q x C, quelle est la quantité de silice dissoute transportée en un an ?  
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Les préfixes du Système International d’Unités 10n Préfixe Symbole Désignation 

1012 téra T Billion 

109 giga G Milliard 

106 méga M Million 

103 kilo k Millier 

102 hecto h Centaine 

101 déca da Dizaine 

100 - - Unité 

10-1 déci d Dixième 

10-2 centi c Centième 

10-3 milli m Millième 

10-6 micro m Millionième 

10-9 nano n Milliardième 

10-12 pico p Billionième 

Tableau 1.1 

ENTRAINEMENT N°7 (SOLUTION PAGE 51) 
Quelle est la longueur en années de 31,6 Gigasecondes (dans une année, il y a 365,25 jours) ? A combien de secondes cela 
correspond-il ? 

 
Glossaire 

Glossaire : Liste alphabétique placée à la fin d’un ouvrage et donnant les mots du vocabulaire spécialisé qui y est utilisé. 
Silice : On appelle silice la forme naturelle du dioxyde de silicium. La silice entre dans la composition de nombreuses roches. 
Socle : Base stable. En géologie, vaste ensemble de terrains sur lequel reposent en discordance des terrains formant la couver-
ture.  
Système International d’Unités (SI) : Le Système International d’Unités, dont l’abréviation internationale est SI est le système 
pratique d’unités de mesure recommandé.  
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2 Relations entre variables géologiques 
Comprendre comment évolue un paramètre en fonction d’un autre est une question fréquemment posée en Sciences Expéri-
mentales. 

� Relation la plus simple : la ligne droite 
Les lignes dont la hauteur augmente vers la droite possède une pente (gradient) positive, tandis que les lignes qui décroissent 
en hauteur possèdent une pente (gradient) négative. 
L’évolution de la température avec la profondeur à l’intérieur de la Terre est de forme linéaire : 

67mpé;<6=;7 = (>;<?@7A6 × C;DEDA?7=;) + 67GCé;<6=;7	?7	H=;E<I7 
 
On dit que la température est une fonction de la profondeur. Deux valeurs sont caractéristiques : 
-la pente (ou gradient ou coefficient directeur) qui est le coefficient multiplicateur de la variable explicative (ici, la profondeur), 
-l’intercept (ou ordonnée à l’origine) qui est la valeur obtenue lorsque la variable explicative vaut zéro. 
A la profondeur zéro (la surface), l’équation montre que la température va correspondre à la température de surface. Si l’inter-
cept (ordonnée à l’origine) vaut 10 °C et le gradient vaut 20 °C km-1, on estime que la température vaudra 810 °C à 40 km de 
profondeur (20 x 40 + 10). 

ENTRAINEMENT N°8 (SOLUTION PAGE 51) 
La résistance mécanique à la rupture des roches augmente habituellement avec la profondeur (pression). Si la résistance méca-
nique T augmente de 0,8 MPa (mégaPascal) pour chaque augmentation de la pression s et que cette résistance mécanique vaut 
C=10 MPa lorsque s=0, quelle est l’équation correspondante ? Dessinez le graphe associé. 

� Equation quadratique 
De nombreux phénomènes géologiques ne sont pas bien représentés par la ligne droite, d’autres équations peuvent alors être 
utilisées. Parmi elles, les équations quadratiques. 
Exemples : La température à l’intérieur de la Terre à des profondeurs qui dépassent 100 km ou bien la contrainte basale sous 
un glacier de montagne. 

contrainte basale (VW<) = −43,5(Δh)4  +  159,8Δh  +  0,5 
 
Remarque : Dans cette équation, Dh, qui est la différence d’altitude entre le point le plus haut et le point le plus bas du glacier 
est exprimée en km. Il est toujours prudent de réaliser des calculs en utilisant les unités du Système International : on pourrait 
présenter une équation qui serait valide avec des mètres. Cela étant, nous serons tous d’accord pour admettre que, concernant 
la Terre, il est souvent plus pratique d’utiliser le km plutôt que le m. La forme générale de l’équation quadratique (équation d’une 
parabole) est : 

b = c	!( + d	! + e 

ENTRAINEMENT N°9 (SOLUTION PAGE 51) 
Si on a f=2g2-10g+6 
Quelles sont les constantes équivalents to a, b et c de l’équation quadratique ? 

� Fonctions polynomiales 
Fournissant des résultats plus précis lorsque l’on augmente le nombre de termes, ces fonctions sont de la forme : 

b = c2 + c,! + c(!
( + c%!

% +⋯+ c5!
5 

Le gain en précision va se faire au détriment de la facilité à déterminer les coefficients de la relation. On peut remarquer que si 
n=1, on retrouve l’équation de la ligne droite. 

L'utilisation de la règle de trois (proportionnalité, produits en croix) est justifiée uniquement lorsque l’on se trouve en présence 
d’une relation linéaire et d’un intercept nul. 
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Si on observe, par exemple, une température de 210 °C à la profondeur de 10 km, estimons par proportionnalité la température 
à 30 km : on trouve 210 x (30/10) = 630 °C. Ce résultat est faux ! Si on applique la relation présentée en a), la meilleure estimation 
en réalité vaut 20 x 30 + 10 = 610 °C. 

� Puissances négatives 

!$5 = (
!5$  

� Puissances fractionées 
!, (⁄ = √!

!, %⁄ =% √!

!, 5⁄ =5 √!

 

Une fonction polynomiale qui contient une puissance fractionnée est celle qui représente l’épaisseur de la tranche d’eau d à 
proximité d’une dorsale océanique, en fonction de la distance x à l’axe de la dorsale : d = d( + ax)/+ 

� Fonctions exponentielles 
La porosité qui évolue avec la profondeur d’enfouissement d’un sédiment peut obéir à la relation suivante (z en km) : ϕ = 0.6 × 2,- 
Remarque : Une forme plus générale de ce type d’équation fera intervenir un facteur d’échelle, car en mathématiques l’argu-
ment d’une exponentielle est sans dimension. Ce facteur d’échelle sera souvent noté l, comme une longueur d’onde. 

ENTRAINEMENT N°10 (SOLUTION PAGE 51) 
Quelle valeur de porosité observe-t-on à la profondeur de 2 km ? 

La forme générale de l’équation exponentielle est : 
b = cd78

b = ch78
 

La deuxième ligne correspond au cas particulier - = . ≈ 2.718 
La variation de la porosité avec la profondeur est finalement souvent modélisée sous la forme : ϕ = ϕ( × .

,-
./  

Dans ce type d’équation (que l’on retrouve souvent en Géosciences), il peut être intéressant de comprendre les significations 
de f ₀ et l. 
N’importe quel nombre à la puissance zéro vaut un : ainsi, si la profondeur vaut zéro, le terme exponentiel vaut un et par consé-
quent f=f ₀. La constante f ₀ est la porosité à la profondeur zéro (c’est-à-dire en surface). Si z vaut l , on a le développement 
suivant : 

Φ = Φ97
$:/: 

Φ = Φ97
$< 

Φ =
Φ9

7
 

Φ =
Φ9

2,71
 

Cela signifie que l est la profondeur qui correspond à la diminution de la porosité d’environ un tiers de sa valeur en surface. 

� Logarithmes 
Le logarithme est la fonction inverse de l’exponentielle. Le logarithme en base 10 est la fonction inverse de la puissance de 10. 
Si on considère le tableau suivant : 

n 10n 
-2 0,01 
-1 0,1 
0 1 
1 10 
2 100 
3 1000 
Tableau 2.1 
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Il suffit d’intervertir les colonnes pour obtenir un tableau des logarithmes : 
Nombre Logarithme 

0,01 -2 
0,1 -1 
1 0 

10 1 
100 2 

1000 3 
Tableau 2.2 

On peut visualiser l’allure de la fonction entre x=0.01 et x=10 à l’aide d’un script en langage python : 
import matplotlib.pyplot as plt 
nombre=[0.01,0.1,1,4,6,10] 
loga=[-2,-1,0,0.602,0.778,1] 
plt.plot(nombre,loga,'.-g') 
plt.xlabel('x') 
plt.ylabel('log10(x)') 
plt.show() 

 

 
 

 
On constate que la courbe ne coupe pas l’axe vertical. Elle ne le coupera en aucun cas, car les logarithmes des nombres négatifs 
n’existent pas. 
Les logarithmes sont utiles pour "comprimer" les grandes étendues de valeurs. Par exemple, la fréquence annuelle moyenne 
des séismes en fonction de leur magnitude est donnée dans le tableau suivant : 

Magnitude N/an Magnitude N/an 
8 1 4 10 000 
7 10 3 100 000 
6 100 2 1 000 000 
5 1000 1 10 000 000 

Tableau 2.3 
On peut représenter la fréquence statistique en fonction de la magnitude sur un diagramme cartésien : 
import matplotlib.pyplot as plt 
nombre=[10000000,1000000,100000,10000,1000,100,10,1] 
mag=[1,2,3,4,5,6,7,8] 
plt.plot(mag,nombre,'go') 
plt.xlabel('M') 
plt.ylabel('N') 
plt.show() 
 
 
 
 
 
 
 
 
 

 
 

Figure 2.2 
 

Figure 2.1 
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Ce graphe apporte finalement peu d’information par manque de lisibilité. Avec un graphe semi-logarithmique : 
import numpy as np 
import matplotlib.pyplot as plt 
nombre=[10000000,1000000,100000,10000,1000,100,10,1] 
mag=[1,2,3,4,5,6,7,8] 
plt.plot(mag,np.log10(nombre),'ro') 
plt.xlabel('M') 
plt.ylabel('Log(N)') 
plt.show() 

 

 
 
 
 
 
 
 
 
 
 
L’utilisation de logarithmes décimaux améliore notablement la représentation. La fonction logarithme permet de montrer des 
variations énormes, puisque des puissances de dix se transforment en nombres et que ses produits se transforment en sommes. 
C'est pour cette raison que, par exemple, l'intensité d'un son est exprimée en décibels… ou que l’amplitude d’une vibration 
sismique est transformée en magnitude, par l’intermédiaire d’une équation logarithmique. A l’inverse, la fonction exponentielle 
permet d’étudier des variations à l’infini. 
 
D’autres bases que la base 10 peuvent être utilisées pour construire les logarithmes. Le logarithme de base 10 est appelé loga-
rithme décimal ou logarithme commun. Le logarithme de base e (e ≈ 2,718) est appelé logarithme naturel ou logarithme né-
périen. Ce dernier est souvent noté "ln". 
Une échelle communément utilisée en sédimentologie pour quantifier la taille des grains sédimentaires est appelée l’échelle 
phi, telle que : 

Φ = −mD>4(?) 
où d est la taille du grain en mm (on utilise la lettre grecque phi, mais cette fois-ci, ce n’est pas pour la porosité, comme déjà vu 
en dans la partie « fonctions exponentielles ») 
L’équation qui permet de réaliser la conversion entre les bases b et c est : 

log=(a) =
lo>>(<)

mD>>(o)
 

ENTRAINEMENT N°11 (SOLUTION PAGE 51) 
Quel nombre a pour logarithme 2 en logarithme de base 5 ? 

ENTRAINEMENT N°12 (SOLUTION PAGE 51) 
Ecrire log2(a) en fonction de log10(a) 
 
Au fur et à mesure que des cristaux se forment dans un magma, on peut considérer que les concentrations C des éléments 
chimiques dans le liquide restant évoluent selon l’équation :  
C=C₀ F(D-1) 
où C₀ est la concentration de l’élément dans le liquide avant le début de la cristallisation. F est la fraction de liquide restante et D 
est une constante (connue sous le nom de coefficient de répartition). Calculez la concentration d’un élément après 50% de 
cristallisation (c’est-à-dire pour F=0.5) si la concentration initiale valait 200 ppm (avec D=6,5). 

Figure 2.3 
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Glossaire 

Contrainte basale : La contrainte de cisaillement basale est la contrainte mécanique (force par unité de surface) qui s’exerce à la 
base d’un matériau (glace, lave, sol, sédiments, …) en écoulement. Sa détermination est indispensable pour comprendre par 
exemple la dynamique (évolution dans le temps du déplacement) d’un glacier. L’étude de la dynamique des glaciers fait partie 
des outils mis en œuvre dans le cadre de l’analyse des effets du réchauffement climatique. 
Glacier : Masse de glace formée par l’accumulation de la neige. 
Semi-logarithmique : Se dit d’une représentation graphique dans laquelle l’une des deux grandeurs est représentée avec une 
échelle arithmétique, l’autre avec une échelle logarithmique. 
Modélisation : Élaboration d’une représentation d’un phénomène en essayant de rendre compte au mieux de ses propriétés 
connues. 
Parabole : Ligne courbe qui résulte de la section d’un cône quand il est coupé par un plan parallèle à un de ses plans tangents. 
Porosité : Ensemble des volumes de petite taille pouvant être occupés par des fluides (gaz, eau, pétrole) à l’intérieur d’une roche. 
Variable explicative : Lorsque les valeurs d’une variable Y dépendent des valeurs d’une variable X, la variable X est appelée 
variable explicative (ou variable indépendante), tandis que la variable Y est la variable à expliquer (ou variable dépendante).  
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3 Equations 
En Sciences, comme dans la vie pratique, quand l’on veut connaître des nombres, il faut souvent résoudre des équations. C’est 
ce qu’on appelle l’algèbre, dénommée ainsi d’après un manuscrit du plus célèbre mathématicien persan, né vers l’an 780 en 
Ouzbékistan,  Al-Khwarizmi. 

� Réarranger des équations simples 
La règle : la partie droite et la partie gauche de l’équation doivent toujours rester égales. Toute manipulation à gauche est réali-
sée de la même façon à droite et réciproquement. Ainsi, 

â>7 = V	 × C;DEDA?7=; 
â>7	 + 	3 = V	 × C;DEDA?7=; + 3 
3	 × â>7 = 3	 × V	 × C;DEDA?7=; 

3	 × â>7 + 3 = 3	 × V	 × C;DEDA?7=; + 3 
sont toutes des relations équivalentes.  
Si l’on veut connaître la profondeur à partir de l’âge, il suffira de diviser l’équation de départ par k : 

â>7 = V	 × C;DEDA?7=; 
â>7

V
=
V

V
× C;DEDA?7=; 

C;DEDA?7=; =
â>7

V
 

ENTRAINEMENT N°13 (SOLUTION PAGE 51) 
Si à 3 m, l’âge est de 3000 ans, quelle est la valeur de k ? Modifiez l’équation de départ pour trouver cette valeur. 

Considérons une équation plus complexe. On a estimé que le volume (volume linéaire : volume par unité de longueur) sableux 
d’une plage variait depuis 2017 selon l’équation : 

q = 19,59	 × 	<AAé7	 − 	38	660 
Pour 1987, on calcule un volume de 245,7 m³/m. 
Admettons que l’on souhaite exprimer le volume en fonction du nombre d’années N qui se sont écoulées depuis 2017. L’astuce 
pour parvenir à cet objectif consistera à faire apparaître N dans la démonstration (N=année-2017). 
 

q = 19,59	 × 	<AAé7	 − 	38	660 
q + 38	660 = 19,59	 × 	<AAé7	 − 	38	660 + 38	660 

q + 38	660 = 19,59	 × 	<AAé7 
q + 38	660

19,59
=
19,59

19,59
× <nné7 

q + 38	660

19,59
= <nné7 

q + 38	660

19,59
− 2017 = <nné7 − 2017 

On a fait apparaître N=année-2017. 
q + 38	660

19,59
− 2017 = s 

q + 38	660

19,59
− 2017	 + 2017 = s + 2017 

q + 38	660

19,59
= s + 2017 

19,59 ×
q + 38	660

19,59
= 19,59 × (s + 2017) 

q + 38	660 = 19,59 × (s + 2017) 
q + 38660 − 38	660 = 19,59 × (s + 2017) − 38	660 

q = 19,59 × (s + 2017) − 38	660 
 
Avec un peu d’habitude, il est possible d’arriver au résultat de façon plus directe en omettant les lignes les plus évidentes : 

q = 19,59	 × 	<AAé7	 − 	38	660 
q + 38	660 = 19,59	 × 	<AAé7 

q + 38	660

19,59
= <nné7 
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q + 38	660

19,59
− 2017 = <nné7 − 2017 

q + 38	660

19,59
− 2017 = s 

q + 38	660

19,59
= s + 2017 

q + 38	660 = 19,59 × (s + 2017) 
q = 19,59 × (s + 2017) − 38	660 

� Réarranger des équations quadratiques 
Considérons à nouveau l’équation vue dans le chapitre 2 : 

tDA6;<@A67	o<H<m7	(VW<) = −43,5(Δℎ)4 + 159,8Δℎ + 0,5 
Comment faire si l’on souhaite déterminer la différence d’altitude Dh qui correspond à la contrainte basale de 70 kPa ? 
Il suffit de trouver les racines de l’équation quadratique. Les racines sont les valeurs de x pour lesquelles y=0 dans l’équation ci-
dessous.  

v = <w4 + ow + I 
Ces racines sont données par : 

w =
−o ± √o4 − 4<I

2<
 

Quelles sont les racines de l’équation : y = 5x² - 2x – 7 ? 
On a a = 5, b = -2 et c = -7 
Le calcul des racines donne : 

x =
2 ± z(−2)4 − 4 × 5 ×−7

2 × 5
 

x =
2 ± √144

10
 

x =
2 ± 12

10
 

x = 1,4		 w = −1 
On peut vérifier que cela fonctionne en remplaçant x par -1 ou x par 1,4 dans y = 5x² - 2x – 7. Si l’on traçait un graphe de la 
fonction, on verrait que sa courbe coupe l’axe y=0 en 2 points. 

ENTRAINEMENT N°14 (SOLUTION PAGE 51) 
Si Contrainte basale = -43,5 (Dh)² + 159,8 Dh + 0.5 
Pour quelle différence d’altitude observe-t-on une contrainte de 70 kPa ? 
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4 Equations (plus compliquées) 
Au XVIIe siècle, les calculs en Astronomie sont à l’origine de l’apparition d’équations plus compliquées. 

� Expressions qui contiennent des exponentielles ou des logarithmes 
Les logarithmes sont les fonctions inverses des puissances :  

{|,?(b
8) = ! 

Ici, y représente la base du logarithme. 
Par exemple, 10² =100 et log(100)=2. Une autre propriété est : 

{|,(cd) = {|,(c) + {|,(d) 
Par exemple, log(12)=log(3)+log(4) 

{|,(!5) = }{|,(!) 
{|,(c d⁄ ) = {|,(c) − {|,(d) 

Si on se trouve en présence d’une équation telle que (porosité en fonction de la profondeur) :  
� = �9 × 7

$@ A⁄  
Il est possible de la transformer : 

ln(�) = lnÄ�9 × 7
$@ A⁄ Å 

En utilisant les règles vues précédemment : 
ln(�) = ln(�9) + lnÄ7

$@ A⁄ Å 
 

ln(�) = ln(�9) − Ç É⁄  
 
On constate que l’on arrive à l’équation d’une droite si l’on trace ln(F) en fonction de z. Cette droite montre un gradient qui vaut 
(-z/l) et un intercept qui vaut ln(F 0). 
Si l’on cherche à déterminer une profondeur, cette équation doit être réorganisée : 

ln(�) +
Ç

É
= ln(�9) 

 
Ç

É
= ln(�9) − ln(�) 

 
Ç = É ln(�9 �⁄ ) 

ENTRAINEMENT N°15 (SOLUTION PAGE 51) 
Si l=2 km et Fo=0,7 
A quelle profondeur observe-t-on une porosité de 0,35 ? 

� Systèmes d’équations 
Intéressons-nous à l’évolution de la température depuis le centre de la Terre. Si cette évolution est quadratique, il est possible 
de proposer : 

Ñ = <;4 + o 
b pourrait être la température au centre de la Terre. Le coefficient a devrait être négatif de telle façon que la température diminue 
quand le rayon r augmente. 
On va considérer deux valeurs de r où la température est bien connue. 
Par exemple : 
T=4300 °C pour r=1260 km  
T=1150 °C pour r=6260 km 
On écrit : 

4300 = 1587600< + o
1150 = 39187600< + o

 
 
On peut réécrire la première équation et substituer le résultat dans la deuxième équation : 

o = 4300 − 1587600<
1150 = 39187600< + 4300 − 1587600<
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On réorganise : 
1150 − 4300 = 39187600< − 1587600<

−3150 = 37600000<
< = −3150 37600000⁄ = −8.378 × 10$B

 
 
Cette valeur est utilisée pour calculer b : o = 4300 − 1587600 × −8.378 × 10$B = 4300 + 133 = 4433 
 
Nous avons pratiqué la résolution d’un système de 2 équations par substitution. Il est également possible de résoudre de cette 
façon des systèmes d’équations qui comportent 3, 4, 5 équations, ... 

Un système d’équations peut être sans solution. C’est notamment le cas lorsque les équations ne sont pas linéairement indé-
pendantes. Par exemple : 8=3a+2b et 16=6a+4b sont des équations qui ne sont pas indépendantes (la seconde est simplement 
le double de la première). 

� Assurance Qualité (AQ) 
Plusieurs techniques permettent de vérifier la qualité du résultat d’un calcul. Il est possible de pratiquer l’approximation : est-ce 
que le résultat semble avoir le bon ordre de grandeur ? 
 
L’approximation consiste à calculer rapidement en simplifiant les nombres. On peut reprendre l’équation :  

� = �9 × 7
$@ A⁄  

Si z=5,2 km, l=2,4 km et F0=0,88, on trouve F=0,1 
On peut pratiquer l’approximation en prenant z=5 km, l=2,5 km, F0=0,9 et en considérant que e=3 (rappel :  e ≈ 2,718). 

� = 0,9 × 3$B 4,B⁄

� = 0,9 × 3$4

� =
0,9

34
=
0,9

9
= 0,1

 

On peut ainsi vérifier rapidement le résultat exact 
L’analyse dimensionnelle est une méthode qui permet de vérifier la bonne unité d’un résultat. 
EXEMPLE 
Essayons de retrouver la densité moyenne de la Terre. On a  

, =
/+'

.'
(  

 
g est l’attraction gravitationnelle à la surface de la Terre. Cette grandeur à la dimension d’une accélération. Elle s’exprime en m 
s-2. On adopte souvent une valeur moyenne de 9,81 m s-2. 
G est la constante d’attraction universelle. G=6,67 10-11 m3 kg-1 s-2. 
MT est la masse de la Terre. L’unité de masse est le kilogramme (kg). 
rT est le rayon de la Terre. rT =6371 km=6371 103 m. 
 
On a la masse volumique de la Terre qui vaut Ö' =

C0

D0
 

Le volume de la Terre (sphère) vaut Ü' = á à⁄ â.'
% 

 
La densité (d’un solide) est définie comme le rapport de la masse volumique du solide par celle de l’eau. La masse volumique 
de l’eau vaut 1000 kg m-3. La densité est une grandeur sans dimension. 
 
Par conséquent, la densité de la Terre vaut ä' =

E0
,222

 
Combinons toutes ces équations : 

ä' =
Ö'

()))
 

 

ä' =

+'
Ü'
()))
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ä' =

,.'
(

/
á
à
â.'

%

()))
 

 

ä' =

à,
á/â.'
()))

 
 

ä' =
à,

á)))/â.'
 

 
Nous allons écrire cette équation aux dimensions. On remplace chaque terme par sa dimension. Les dimensions sont écrites 
entre crochets.  
Les dimensions sont : 
-pour la masse : [M] 
-pour la distance : [L] 
-pour le temps : [T] 
-pour la température : [K] 
En fonction des unités des différents termes : 

ä' =
à,

á)))/â.'
 

devient (3 et p n’ont pas de dimension) 

äãå	ä' =
çé$(

+ç$%ç%+$,é$(ç
= ( 

On constate que la densité est bien une grandeur sans dimension. 

ENTRAINEMENT N°16 (SOLUTION PAGE 51) 
La viscosité est une grandeur mécanique qui est utilisée en physique des matériaux terrestres pour caractériser, par exemple, la 
déformation du manteau de la planète. 
  
Par analyse de dimension, trouvez l’unité de la viscosité dynamique h  sachant que :  

è = êë
äí

äì
 

t  est la contrainte. La contrainte à la grandeur d’une pression. Elle est exprimée en Pascal (Pa). 
e est la déformation. La déformation est une grandeur sans dimension. Elle correspond à un rapport de longueurs. 
t est le temps. L’unité de temps est la seconde (s). 
La lettre "d" indique une dérivée. En l’occurrence 23/25 est la dérivée de la déformation par rapport au temps (cette dérivée 
correspond à une vitesse de déformation). L’application de la dérivée ne modifie pas les unités, ni de la déformation, ni du 
temps. 

L’utilisation de cas particuliers est un autre moyen de vérifier les résultats numériques. On cherche ainsi à savoir si la réponse 
obtenue est raisonnable dans des cas simples.  
Il est par exemple possible de vérifier si l’équation  

Ñ = <Ç + Ñ9 
fournit un résultat raisonnable pour la température à la profondeur zéro. Dans cette expression a est le gradient de température 
et T0 est la température de surface. 

Glossaire 
Kilo : Forme abrégée de kilogramme, qui est l’unité de base de la masse dans le Système International, égale à 1 000 grammes. 
Ordre de grandeur : L’ordre de grandeur d’une valeur correspond à la puissance de dix se rapprochant le plus de cette valeur. 
Par exemple, l’ordre de grandeur de la valeur 110 est 100. L’ordre de grandeur de 800 est 1000. L’ordre de grandeur de 30 est 
10.  
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5 Trigonométrie 
La trigonométrie est l’étude des triangles. 

� Angles, triangles et fonctions trigonométriques 
Les angles en Sciences de la Terre sont mesurés en degrés, puisque c’est une unité pratique pour mesurer des pendages et des 
azimuts, par exemple. On se trouvera parfois obligé d’utiliser, notamment avec les outils informatiques, une autre unité : le ra-
dian. Le radian vaut approximativement 57,3°. Le radian est défini de telle façon qu’une rotation complète (un angle de 360°) 
correspond à 2p radians. La géométrie du triangle rectangle permet de définir les fonctions tangente, sinus, et cosinus (fonctions 
trigonométriques). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Dans un triangle rectangle ABC, H est appelé l’hypoténuse. 

tan(q) : longueur du côté opposé / longueur du côté adjacent. 

sin(q) : longueur du côté opposé / longueur de l’hypoténuse. 

cos(q) : longueur du côté adjacent / longueur de l’hypoténuse. 

En cartographie géologique, la trigonométrie permet de déterminer l’épaisseur d’une couche. Imaginons que sur une carte 
géologique une couche montre un affleurement large de L=2 km et que son pendage soit de q=23°. On peut retrouver un 
triangle rectangle (vue en coupe) :  
 
 
 

 
 

 
sin(q)=E/L 
E=Lsin(q)=2000 sin(23)=781 m 
 
Les fonctions trigonométriques réciproques s’appellent arc-tangente, arc-sinus et arc-cosinus. On les appelle également fonc-
tions trigonométriques inverses. Elles correspondent à tan-1, sin-1 et cos-1 sur une calculatrice. Les notations atan, asin et acos 
sont également possibles. Les notations tan-1, sin-1 et cos-1 peuvent être trompeuses : il s’agit bien des fonctions réciproques (ou 
fonctions inverses) et non de fonctions à la puissance -1. Cette confusion est possible, car la pratique de notation des fonctions 
trigonométriques est de placer l’exposant éventuel immédiatement après le symbole de la fonction : par exemple, le carré du 
sinus de x est noté sin²(x). 

ENTRAINEMENT N°17 (SOLUTION PAGE 51) 
Une falaise est haute de 130 m. Une couche affleure au sommet montrant un pendage de 46° en direction du bord de la falaise. 
En utilisant la tangente, déterminer à quelle distance, horizontalement, le même lit affleure au pied de la falaise. 

Figure 5.2 
 

Figure 5.1 
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� Déterminations d’angles et de distances 
Quelques règles supplémentaires concernant les triangles : 

1) La somme des angles d’un triangle vaut 180° 

2) La règle des sinus : La longueur de chaque côté, divisée par le sinus de l’angle opposé est une constante 

3) La généralisation du théorème de Pythagore donne : î( = c( + d( − êcdî|ï(ñ) 

 

 
 
 
 
 
 
 
          
 
 
 
 
 
 
Cette relation peut être démontrée en quelques lignes. On peut écrire, d’après la figure 5.3 (partie droite) : 

c4 = d4 + h4 
c4 = (a − e)4 + h4 

c4 = a4 + e4 − 2ae + h4 
Comme  h = bsin(γ) et   e = bcos(γ) : 

c4 = a4 + b4cos4(γ) − 2abcos(γ) + b4sin4(γ) 
c4 = a4 + b4[cos4(γ) + sin4(γ)] − 2abcos(γ) 

On arrive bien à  c4 = a4 + b4 − 2abcos(γ) 

ENTRAINEMENT N°18 (SOLUTION PAGE 51) 
Si a = b = 70°, quelle est la valeur de g ? 
Si b = 4 km, c = 3 km et g = 30°, quelle est la valeur de b  ? 
Si b = 4 km, c = 2 km et a = 35°, quelle est la valeur de a ? 

EXEMPLE 
Supposons que les longueurs des 3 côtés du triangle soient connues, mais que les angles soient inconnus. Il est possible de 
transformer : 

c( = d( + î( − êdî	î|ï(õ) 
en 

î|ï(õ) =
d( + î( − c(

êdî
 

donc  

õ = î|ï$, ú
d( + î( − c(

êdî
ù 

Une démarche similaire pour l’angle b donne : 

û = î|ï$, ú
c( + î( − d(

êcî
ù 

Figure 5.3 
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Le dernier angle est déduit par : ñ = (ü) − õ− û 
ENTRAINEMENT N°19 (SOLUTION PAGE 51) 
Si a = 38°, b = 8 km et c = 7 km, trouvez les valeurs de a, b et g . 
Si a = 38°, b = 8 km et a = 6 km, trouvez les valeurs de c, b et g . 
Si a = 38°, b = 60° et a = 4 km, trouvez les valeurs de b, c et g . 

� Coordonnées cartésiennes et angles qui dépassent 90° 
La localisation d’un point dans un plan peut être spécifiée en donnant les distances horizontales et verticales depuis un point 
que l’on va nommer l’origine du système de coordonnées (en ce point, x = y = 0). 
Par exemple, on peut se trouver en présence d’un point de localisation (1.5, 2.5), comme le montre la figure 5.4. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Sur ce type de diagramme cartésien, il est possible de définir des angles :  

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.4 
 

Figure 5.5 
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En mathématiques, les angles sont comptés positivement dans le sens anti-horaire (sens inverse des aiguilles d’une montre). 
C’est une petite difficulté pour les géologues qui mesurent les angles avec une boussole positivement dans le sens horaire (sens 
des aiguilles d’une montre). 
À partir du diagramme précédent, on se rend compte que : 
 

6<A(†F) = DCCDHé <?°<I7A6⁄ = 2,5 1,5⁄ = 1,67 
Cela signifie que : 
 

†F = 6<A$<(1,67) = 59° 
 
Il existe 2 angles entre 0° et 360° qui donnent lieu à une valeur donnée pour le sinus, le cosinus ou la tangente. Les angles qui 
dépassent 90° peuvent poser un problème. Considérons par exemple le triangle suivant : 

 
 
 
 
 
 

 
 
 
 
Pour déterminer q, il paraît évident d’écrire d’après la règle des sinus : 
 

H@A(30)

6
=
H@A(†)

10
 

Il en découle :  

H@A(†) = 10
H@A(30)

6
= 0,83

† = H@A$<(0,83) = 56°

 

 
On constate facilement sur le triangle, que ce résultat n’est pas le bon. La valeur angulaire trouvée est inférieure à 90°, tandis 
que la figure montre que q  correspond à un angle obtus. La réponse correcte est 180-56=124°. 
 

Par conséquent, il ne faut pas oublier qu’avec les fonctions trigonométriques réciproques, deux solutions sont toujours pos-
sibles. Il faudra prendre l’habitude de calculer les deux et de choisir ensuite la solution la plus appropriée. 

� Trigonométrie en 3 dimensions (pendage apparent) 
La 3e dimension est très importante en géologie. On peut par exemple évoquer le cas typique du pendage apparent d’une 
couche qui est observable sur une falaise.  
Le pendage vrai a est mesuré, en partant de l’horizontale (PH), dans un plan vertical (PV), selon la ligne de plus grande pente, 
c’est-à-dire perpendiculairement à l’azimut du plan considéré. Si le plan d’observation fait un angle b  (b ≠ 90°) avec l’azimut du 
plan considéré, on mesure alors un pendage apparent a’, comme cela est illustré sur la figure 5.7. 
On peut montrer que £ = 6<A$< §

GHI(K1)

MNI(O)
• 

  

Figure 5.6 
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ENTRAINEMENT N°20 (SOLUTION PAGE 52) 
Un pendage apparent sur une falaise est de 25°, alors que le vrai pendage vaut 35°. Quel est l’angle entre la falaise et l’azimut 
du plan ? 

� Vecteurs 
Un vecteur est une quantité qui a une direction et une magnitude (norme). Le champ magnétique terrestre est un vecteur. 
L’écoulement d’une coulée de lave est un vecteur. Un vecteur est représenté par une flèche qui possède une direction et une 
longueur (norme). 
D’autres quantités sont simplement des scalaires : elles possèdent une magnitude, mais pas de direction. Par exemple, le temps 
de refroidissement d’une coulée de lave est une grandeur scalaire. 

ENTRAINEMENT N°21 (SOLUTION PAGE 52) 
Quelles quantités sont des vecteurs ou des scalaires ? : 
-la masse 
-l’accélération de la pesanteur 
-la contrainte cisaillante 
-l’âge 
-la ligne qui relie 2 points sur la surface de la Terre 

L’addition de 2 vecteurs est pratiquée géométriquement : 

 
 
 
 
 
 
La multiplication scalaire d’un vecteur consiste à multiplier sa longueur (norme) par un scalaire. Par exemple, on peut multiplier 
un vecteur de direction 10°N et de norme 3 km par 5. On obtiendra un vecteur toujours de direction 10°N, mais de longueur 15 
km (3 x 5). Si la multiplication implique une valeur négative, par exemple, une multiplication par -1, la direction (sens) du vecteur 
initial sera opposée. Dans le cas présent, le vecteur ne pointera plus vers 10°N, mais vers 190°N. 
En combinant addition et multiplication scalaire, on voit qu’il est possible d’écrire un vecteur sous la forme : 

c¶¶⃗ = !®⃗ + b©⃗ 
Les vecteurs i et j sont des vecteurs unitaires. 
Avec un peu de trigonométrie, il est facile de montrer que : 

w = <IDH(θ) 
v = <H@A(θ) 

avec a la norme du vecteur et q  qui est l’angle que fait le vecteur a avec la direction x. 

Figure 5.7 
 

Figure 5.8 
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Une démonstration permet de trouver facilement la valeur de la norme : 
w = <IDH(†)

w4 = <4IDH4(†)

v = <H@A(†)

v4 = <4H@A4(†)

w4 + v4 = <4IDH4(†) + <4H@A4(†) = <4[IDH4(†) + H@A4(†)]

IDH4(†) + H@A4(†) = 1

w4 + v4 = <4

 

La valeur de la norme est < = zw4 + v4. 
La direction du vecteur est † = 6<A$<(v w⁄ ). 
La description des vecteurs en fonction de leurs composantes présente l’avantage de rendre les additions plus simples : pour 
ajouter deux vecteurs, il suffit d’ajouter les composantes. 
EXEMPLE 
2 failles adjacentes (F1 et F2) présentent des pendages et des rejets différents. On cherche à déterminer le mouvement total du 
bloc 3 par rapport au bloc 1. La vue en coupe ci-dessous (figure 5.9) est un schéma de la situation. 
 

 
 
 
 
 
 
 
 
 

Figure 5.9 
 

La solution de ce problème va passer par l’expression en composantes des vecteurs glissements (s1 et s2) sur chacune des 
failles : 

ï,¶¶¶¶⃗ = á, àî|ï(´0)®⃗ + á, àïã}(´0)©⃗

ï,¶¶¶¶⃗ = (, ü®⃗ + à, 2©⃗

ï(¶¶¶¶⃗ = üî|ï(00)®⃗ + üïã}(00)©⃗

ï(¶¶¶¶⃗ = á, ´®⃗ + ´, 0©⃗

ï¶⃗ = ï,¶¶¶¶⃗ + ï(¶¶¶¶⃗ = ((, ü + á, ´)®⃗ + (à, 2 + ´. 0)©⃗

ï¶⃗ = ´, á®⃗ + (), á©⃗

 

 
Cette représentation en composantes permet de calculer le rejet total : 

c = z´, á( + (), á( = (ê, êå 
 
Il est possible d’aller plus loin en déterminant le pendage d’une faille équivalente (ou direction moyenne vectorielle) : 

õ = ìc}$,(b !⁄ ) = ìc}$,((), á ´, á⁄ ) = 0ü, á° 

ENTRAINEMENT N°22 (SOLUTION PAGE 52) 
L’aimantation rémanente de 5 échantillons prélevés dans un filon Tertiaire montre les directions azimutales suivantes :321, 8, 
357, 19, 339. 
En considérant que les aimantations sont d’intensités égales (autrement dit, il est possible de considérer des vecteurs qui sont 
tous de longueur 1), calculez la direction moyenne vectorielle pour ces mesures. 

ENTRAINEMENT N°23 (SOLUTION PAGE 52) 
L’orientation d’un plan de faille dont la surface est ondulée a été mesurée sur trois affleurements différents le long de la faille : 
- N10° 
- N354° 
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- N8° 
Calculez la direction moyenne vectorielle pour ces mesures. 

Glossaire 
Angle obtus : Se dit d’un angle géométrique dont l’écart angulaire est compris strictement entre celui de l’angle droit (90°) et 
celui de l’angle plat (180°). 
Azimut : L'azimut d’un plan est l'angle entre le Nord magnétique et une ligne horizontale tracée parallèlement à ce plan. 
Faille : Cassure de terrain avec déplacement relatif des parties séparées (compartiments). 
Glissement : Pour une faille, c’est le déplacement relatif des parties séparées (compartiments). 
Hypoténuse (ou hypothénuse) : Le côté d'un triangle rectangle qui est opposé à l’angle droit. 
Norme : La norme d’un vecteur est la distance entre ses extrémités. 
Pendage : Angle d'inclinaison d'une structure géologique par rapport à l'horizontale. 
Rejet : Amplitude du déplacement (glissement) causé par une faille.  
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6  Graphes 
Le géologue/géochimiste/géophysicien dispose parfois de beaucoup de données. Un graphe va souvent permettre d’y voir 
plus clair. Nous avons déjà vu les graphes x-y (diagrammes cartésiens). D’autres possibilités existent. 

� Les graphes logarithmiques  
Nous avons déjà discuté en section 2 de l’utilité de l’utilisation d’un axe logarithmique pour rendre un graphe plus lisible. 
Les graphes logarithmiques peuvent être des graphes log-log ou des graphes semi-log. Ci-après un exemple de graphe semi-
log. Il est important de savoir lire les valeurs sur un tel type de graphe. Le graphe tracé est celui de l’énergie sismique en fonction 
de la magnitude.  
 
Le code Python permettant d’obtenir ce graphe est le suivant : 
 
import matplotlib.pyplot as plt 
import numpy as np 
# Valeurs de magnitude  
Mag = [5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, 10] 
# Energie  
En = [2.7e12, 1.4e13, 7.6e13, 4e14, 2.1e15, 1.1e16, 5.7e16, 3e17,1.6e18, 8.3e18, 4.4e19] 
# Affiche la grille 
plt.grid(True, which="both") 
# Axe x normal, axe y logarithmique 
plt.semilogy(Mag, En,'ko') 
plt.ylim([1e11,1e20) 
plt.xlim([4.8,10.2]) 
# Le titre 
plt.title('Graphe semilog en Python 3') 
# Etiquette sur l’axe x 
plt.xlabel('Magnitude') 
# Etiquette sur l’axe y 
plt.ylabel('Energie (J)') 
# Affichage 
plt.show() 
 
L’énergie augmentant exponentiellement avec la magnitude, il est judicieux de représenter ces données sur un graphe semi-
log. Sur l’axe y, le quadrillage est reporté selon des distances logarithmiques. Cela peut occasionner des difficultés de lecture. 
Toutefois, si l’on a gardé en mémoire que devant chaque puissance de 10, il y a un "1", tout devient plus simple. 
Ainsi, il faut bien penser que 1015 est en fait 1.1015. On comprend mieux alors pourquoi le point signalé par la flèche bleue 
correspond approximativement à 2.1015 Joules et celui marqué par la flèche verte à 1016 Joules. 
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� Les diagrammes triangulaires (diagrammes ternaires) 
Ces diagrammes sont utilisés pour visualiser les proportions relatives de trois composants qui sont présents dans un objet étu-
dié. Les applications des diagrammes ternaires sont nombreuses.  
 
Parmi ces représentations, on peut citer par exemple : 
- les proportions de sable, limon et argiles dans une roche sédimentaire 
- le diagramme AFM qui donne les proportions d’alcalins, Fer et Magnésium dans une roche volcanique 
- les gammes de composition de la série des feldspaths dans un diagramme ternaire Albite-Orthose-Anorthite 
- la classification des deltas selon qu’ils sont dominés par les processus fluviatiles, tidaux ou de houle 
- la classification des mécanismes au foyer selon les types inverse, normal ou décrochant 

 
Dans ce type de diagramme, chaque sommet du triangle représente un des trois composants. Pour se positionner sur le triangle, 
il faut imaginer des flèches perpendiculaires à chaque côté et qui pointent vers chaque sommet. Sur le triangle suivant (Figure 
6.2), nous avons représenté la flèche associée au contenu en MgO (oxyde de Magnésium). Cette flèche montre que le contenu 
en Magnésium augmente progressivement de 0 à 100 % quand on s’approche du sommet MgO, le long de la flèche. 
Le point reporté sur le triangle (diagramme AFM) ci-dessous (Figure 6.2) correspond à 30 % de MgO, 60 % de FeO et 10 % de 
Na2O + K2O. Le total des proportions doit bien évidemment faire 100 %. 
  

Figure 6.1 
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ENTRAINEMENT N°24 (SOLUTION PAGE 52) 
Reportez le point de composition 20 % de MgO,  70 % de FeO et 10 % de Na2O + K2O. 

� Projections sphériques 
Les géologues structuralistes, les géophysiciens, les mécaniciens des roches, les cristallographes, les minéralogistes sont sou-
vent confrontés à des données qui impliquent des lignes, des plans et les relations angulaires qui existent entre ces objets. 
L’étude de ces relations géométriques est facilitée par l’utilisation de techniques qui permettent de passer de la réalité 3D à la 
visualisation en 2D. Cela explique pourquoi les projections sphériques (en particulier les projections polaires, projections sté-
réographiques et projections équiaréales) sont largement utilisées en Sciences de la Terre.  
L’utilisation de ces projections est traditionnellement enseignée en première ou deuxième année des cursus universitaires en 
Sciences de la Terre. Trop de pages seraient nécessaires pour examiner en détail le principe et toutes les façons d’utiliser ces 
outils. Nous nous contenterons d’exposer le principe de construction de la projection stéréographique et de présenter un 
exemple d’utilisation de projection équiaréale. Une fois que l’usage de la projection équiaréale est compris, il est assez facile 
d’utiliser n’importe laquelle des trois projections sphériques évoquées. 
 
Le point de vue de la projection stéréographique est le pôle supérieur (P) d’une sphère (Figure 6.3). Ce pôle est le point de 
concours (point de rassemblement) de lignes de projection qui partent de l’intersection du plan concerné (plan représenté en 
jaune sur la Figure 6.3) avec la partie inférieure de la sphère. Chaque point (seuls quelques points sont représentés en rouge sur 
la Figure 6.3) de l’intersection va se trouver projeté, en suivant une ligne de projection, sur un plan horizontal (en gris sur la Figure 
6.3). Ainsi, le plan sera finalement représenté par un arc de cercle. Cet arc de cercle est appelé communément un "grand cercle" 
(ou trace cyclographique). Un plan horizontal sera projeté sous la forme d’un cercle horizontal, tandis qu’un plan vertical formera 
en projection une ligne droite. On remarquera que l’objectif simplificateur de la projection est atteint : on transforme un plan 
(objet 3D) en une ligne (objet 2D). De la même façon, lors de la projection, une ligne dans le monde réel 3D (en géologie, une 
strie, une ride de courant, ...) perdra une dimension et sera représentée sur le plan horizontal par un point. 
  

Figure 6.2 
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L’utilisation pratique des projections stéréographique est facilitée par le tracé d’une grille graduée (avec un espacement de 10° 
pour la graduation principale et de 2° pour la graduation secondaire) sur la sphère. Une fois projetée sur un plan horizontal, 
cette grille forme ce que l’on appelle un canevas stéréographique. Ce diagramme se voit doté de directions géographiques 
(Nord, Sud, Est et Ouest). La sphère peut être comparée au globe terrestre avec des méridiens et des parallèles : sur le canevas, 
les grands cercles sont semblables à des méridiens, tandis que les lignes perpendiculaires que l’on nomme petits cercles, sont 
analogues à des parallèles.  

 
Le canevas stéréographique est également appelé canevas de Wulff. Ce réseau préserve les angles entre les plans. C’est pour 
cette raison qu’il est utilisé majoritairement en cristallographie. En géologie structurale, c’est plutôt le canevas équiaréal ou ca-
nevas de Schmidt  (Figure 6.4) qui est utilisé. Ce réseau est obtenu à l’aide d’une projection différente de celle pratiquée pour 
obtenir le canevas stéréographique. Néanmoins, le principe de fonctionnement reste le même : un plan projeté donne un arc 
de cercle et une ligne projetée donne un point. Le canevas de Schmidt conserve les surfaces : cela signifie qu’il est possible de 
comparer directement des densités (nombre de points par unité de surface) de points qui ont été projetés sur différentes parties 
d’un canevas de Schmidt.  
 
Les lignes de programmation suivantes, en Python 3, permettent d’obtenir un canevas de Schmidt sur lequel le plan N150, 65NE 
a été projeté (Figure 6.5). L’utilisation de Python pour représenter des projections sphériques nécessite l’installation du module 
mplstereonet qui a été écrit par Joe Kingston, un géologue structuraliste du Texas. Cette installation peut se faire à l’aide de Pip 
sous Windows, Linux ou macOS. Pip est l’un des outils les plus simples pour installer et gérer les paquets Python. 
Dans un terminal de commande, tapez "pip3 install mplstereonet". 
 
Vous pouvez ensuite tracer votre plan sur un canevas de Schmidt : 
 
import numpy as np 
import mplstereonet 
import matplotlib.pyplot as plt 
azimut1, pendage1 = 150, 65 
azimut2, pendage2 = 265, 78 
fig = plt.figure(figsize=(8,8)) 
ax = fig.add_subplot(111, projection='stereonet') 

Figure 6.3 
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ax.plane(azimut1, pendage1, c='b', label='Stratification %03d/%02d' % (azimut1, pendage1)) 
ax.plane(azimut2, pendage2, c='r', label='Faille %03d/%02d' % (azimut2, pendage2)) 
ax.legend() 
plongement, direction = mplstereonet.plane_intersection(azimut1, pendage1, azimut2, pendage2) 
ax.line(plongement, direction, 'ko', markersize=5,  
label='Intersection %02d/%03d' % (plongement, direction)) 
ax.legend() 
# On ajoute la grille avec espacement de 10° 
ax.grid() 
plt.show() 
 
Sur ce canevas de Schmidt (Figure 6.5) a été également reporté une faille d’azimut N265, 78N. Les deux plans (stratification et 
faille) se croisent en une ligne. Python détermine automatiquement l’orientation de cette ligne (N284, 57) qui est représentée 
par un point. 
 
L’utilisation d’un outil informatique pour représenter des plans ou des lignes sur une projection sphérique n’est pas incontour-
nable : on peut se contenter d’un report manuel en utilisant une feuille de papier calque et un canevas qui sert de "patron" 
(Figure 6.4).  
Dans un premier temps, la feuille de papier calque est superposée sur le canevas. Ensuite, sur la feuille de calque sont reportés 
les quatre points cardinaux (N, S, E et W). Ils sont respectivement situés sur la périphérie du canevas en face des indications 
d’angles 0°, 180°, 90° et 270°, comme sur une boussole. Sur le canevas de Schmidt qui est reproduit ci-après (Figure 6.4), ce 
sont les angles indiqués en gras et en petit sur le pourtour du canevas. On fait ensuite tourner le calque autour d’une punaise 
plantée au centre du dispositif.  
 
Si je veux représenter un plan d’azimut N50 et plongeant de 10° vers le SE, je vais faire tourner le calque vers la gauche. Je vais 
amener la marque du Nord marquée sur le calque en face de l’indication d’angle 50° (indication angulaire indiquée par des 
grands chiffres sur le pourtour du canevas de la Figure 6.4). La dernière opération consiste à tracer le grand cercle qui va repré-
senter le plan : Une fois que le calque a été tourné, on va compter 10° depuis le bord du canevas. 
Cet angle de 10° est le pendage du plan, qui est mesuré en géologie par rapport à l’horizontale. L’horizontale correspond au 
pourtour du canevas (tandis que la verticale correspond au centre). Pour reporter un pendage de plan, on va utiliser les gradua-
tions horizontales (des chiffres en jaune correspondent aux chiffres des dizaines). Il y a également des chiffres bleus qui servent 
lorsque l’on mesure les angles depuis la verticale (c’est le cas par exemple en sismologie). On peut compter 10° depuis la gauche 
ou depuis la droite. Dans le cas présent, le pendage est vers le SE, par conséquent, il faut compter 10° depuis la droite (si le 
pendage était de 10° vers le NW, il aurait fallu compter depuis la gauche). Le résultat est présenté sur la Figure 6.6. 

ENTRAINEMENT N°25 (SOLUTION PAGE 53) 
Reportez le plan d’azimut N80 qui plonge de 70° vers le NNW. 
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Figure 6.4 
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Figure 6.5 
 

Figure 6.6 
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Glossaire 
Albite : Feldspath sodique de formule NaAlSi3O8. 
Alcalin : En pétrologie, s’applique aux substances riches en ions Na ou K. 
Anorthite : Variété de feldspath de formule CaAl2Si2O8. 
Argiles : Terme désignant soit un minéral (minéral argileux), soit une roche composée pour l’essentiel de ces minéraux. Les 
minéraux argileux sont des phyllosilicates hydratés, se présentant en très petits cristaux. Les phyllosilicates sont des silicates dont 
la molécule élémentaire [SiO4]4- forme des feuillets. 
Cristallographe : Personne qui étudie les formes, les structures et les propriétés des cristaux. 
Delta : Embouchure d’un fleuve dans la mer ou dans un lac. 
Diagramme AFM : Diagramme triangulaire utilisé en pétrologie magmatique. 
Feldspath : Minéral essentiel de la plupart des roches magmatiques. Le feldspath est chimiquement un silico-aluminate potas-
sique, sodique ou calcique. 
Géologue structuraliste : Géologue qui étudie les déformations de la partie superficielle de la Terre à l’échelle régionale. 
Graphe log-log, semi-log : Graphe dont les deux axes suivent une échelle logarithmique (log-log) ou dont un axe est logarith-
mique et l’autre linéaire (semi-log). 
Limon : Dépôt détritique (=formé de débris) meuble, argileux et silteux (grain compris entre 1/256 mm et 1/16 mm), continental 
et d’origine fluviatile, lagunaire ou encore éolien. 
Mécanisme au foyer : Glissement de deux blocs le long d’un plan de faille à l’origine d’un séisme. Le mécanisme au foyer peut 
être de type inverse (le glissement horizontal transversal correspond à un raccourcissement), normal (le glissement horizontal 
transversal correspond à une distension) ou décrochant (le glissement horizontal est dans le plan de faille). 
Méridien : Lieu des points ayant une même longitude à la surface de la Terre. Par exemple, la ville de Caen se trouve sur un 
méridien qui fait un angle de 0,37° vers l’Ouest avec le méridien zéro. Les méridiens sont des demi-cercles qui joignent le pôle 
Sud et le pôle Nord. Méridiens et parallèles constituent un quadrillage de lignes imaginaires qui permet de se positionner à la 
surface de la Terre.  
Orthose : Feldspath potassique de formule KAlSi3O8. 
Paquet : En informatique, et en particulier dans le contexte des systèmes UNIX, on appelle paquet (ou parfois "paquetage", en 
anglais "package") une archive (fichier compressé) comprenant les fichiers informatiques, les informations et procédures néces-
saires à l’installation d’un logiciel. 
Parallèle : Lieu des points ayant une même latitude à la surface de la Terre. Par exemple, la ville de Caen se trouve sur un parallèle 
qui fait un angle de 49,18° vers le Nord avec l’Équateur. Les parallèles sont des cercles imaginaires parallèles à l’Équateur. Méri-
diens et parallèles constituent un quadrillage de lignes imaginaires qui permet de se positionner à la surface de la Terre.  
Patron : Dessin sur papier ou sur toile des différentes pièces d’un même vêtement permettant par superposition la coupe de 
vêtement sur tissu. Dans notre contexte, il est évident que le sens du mot ne concerne pas la couture. 
Ride de courant : Petite crête produite dans le sable par les courants d'eau ou le vent. 
Sable : Sédiment détritique meuble dont les grains sont en majorité compris entre 1/16 mm et 2 mm. 
Strie : Fin sillon rectiligne creusé à la surface d’une roche. 
Terminal de commande : Sous Windows, Linux ou MacOs, on appelle ainsi un système de commandes en mode texte, sans 
interface graphique, qui s’utilise au clavier. 
Tidal : Relatif à la marée. 
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7 Statistique 
Cette partie des mathématiques appliquées fait l’objet dans le cursus classique de Licence d’enseignements spécialisés comme 
"Statistique appliquée aux Géosciences" ou "Traitement de données géologiques". C’est pour cette raison que je vais me limiter 
ici à présenter principalement des notions élémentaires de statistique descriptive.  
 
Winston Churchill disait "je ne crois aux statistiques que lorsque je les ai moi-même falsifiées". Cette opinion provient probable-
ment d’un malentendu sur le terme "statistiques". Beaucoup de personnes font la confusion entre données et statistiques. Si on 
dit, "Il y a eu deux éruptions du volcan Cumbre Vieja au cours du XXe siècle", c’est un fait, pas une statistique. En l’occurrence, 
une statistique pourrait être le nombre d’éruptions par siècle, étudié sur un intervalle de temps long de plusieurs millénaires. À 
la citation de Winston Churchill, on peut opposer celle du statisticien Frederick Mosteller : "il est facile de mentir avec la statis-
tique, mais il est plus facile de mentir sans elle". 

� Vocabulaire 
Parmi les notions élémentaires abordées dans cette partie, un peu de vocabulaire spécialisé : 
Admettons que l’on s’intéresse à la densité de schistes ardoisiers dans une formation géologique donnée. On appelle caractère 
la grandeur étudiée. Dans cet exemple, la densité est le caractère. Si l’on détermine la densité d’un prélèvement, on aura mesuré 
un individu. L’ensemble des individus qui auront été mesurés constituera l’échantillon. L’échantillon est issu d’une population : 
en l’occurrence, la population est la totalité de la formation géologique. Pour une raison pratique évidente, il est impossible de 
mesurer la densité de la formation dans son ensemble (il faudrait manipuler des milliers de tonnes de roches). Est-ce que la 
densité constitue une statistique ? Non ! La densité de la formation est un paramètre de la roche étudiée. Si l’on affirme que la 
densité d’un échantillon vaut 2,6, c’est un fait. En revanche, la moyenne d’un échantillon est une statistique : c’est un essai d’es-
timation de la densité moyenne de la totalité des échantillons possibles en calculant la densité moyenne de seulement 
quelques-uns d’entre eux.  
La moyenne est un paramètre de position, tandis que l’écart-type est un paramètre de dispersion. L’écart-type va quantifier la 
variation de densité d’un individu à l’autre. La dissymétrie est un paramètre qui va indiquer s’il y a plus d’individus plus denses 
que la moyenne ou plus d’individus moins denses que le moyenne. 
Généralement, ces paramètres de la population (moyenne, écart-type, dissymétrie, …) seront estimés à partir de l’échantillon. 
La qualité de l’estimation sera fonction de l’effectif (le nombre d’individus) de l’échantillon et de la procédure d’échantillonnage. 
L’échantillonnage doit être aléatoire : on ne doit pas privilégier des prélèvements plutôt que d’autres. Il pourrait arriver, par 
exemple, que l’on prélève majoritairement de la roche qui a subi une altération importante (car il est plus facile de casser une 
roche altérée qu’une roche saine). Cela conduirait à un biais d’échantillonnage qu’il faut à tout prix essayer d’éviter. L’échantillon 
doit être représentatif de la population : si l’on estime que le tiers de la surface de l’affleurement présente une altération mar-
quée, il faut prélever environ un tiers d’individus altérés. 

� Moyenne et médiane 
Le tableau suivant présente des données de densité de 18 échantillons ("individus" du point de vue de la statistique) de schistes 
ardoisiers prélevés dans la même formation géologique. 

numéro d numéro d numéro d 
1 2,69 7 2,71 13 2,64 
2 2,71 8 2,63 14 2,62 
3 2,71 9 2,70 15 2,72 
4 2,71 10 2,69 16 2,75 
5 2,72 11 2,70 17 2,64 
6 2,70 12 2,59 18 2,74 

Tableau 7.1 
La moyenne des valeurs de l’échantillon est la première statistique que l’on peut calculer : 
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N est le nombre d’individus (l’effectif). S est le symbole mathématique de l’addition. Les valeurs individuelles de densité sont 
notées di. La somme est réalisée de i=1 à i=N. Traduite en français courant, cette équation est lue comme "la densité moyenne 
est la somme des densités individuelles, divisée par le nombre de valeurs de densité". 
La médiane est une autre mesure de position d’un caractère. C’est la valeur qui partage la série statistique (la suite de valeurs 
numériques) en deux ensembles de mêmes effectifs. Sa détermination nécessite de classer les valeurs : 
2,59   2,62   2,63   2,64   2,64   2,69   2,69   2,70   2,70   2,70   2,71   2,71   2,71   2,71   2,72   2,72   2,74   2,75 
 
La flèche ci-dessus indique où se trouve la médiane. 

G7?(?) = 2,70 
Si les données sont réparties symétriquement autour de la moyenne, la médiane est très proche de la moyenne. 

� Etendue, variance et écart-type 
L’étendue permet de se rendre compte de la dispersion des données : 
Cette valeur correspond à la différence entre la valeur maximale et la valeur minimale. On trouve : 2,75-2,59=0,16. 
Cette grandeur dépend des valeurs extrêmes (le minimum et le maximum) qui peuvent être relativement variables. Par consé-
quent, pour décrire la dispersion des données, on préfère souvent une grandeur plus stable, la variance (que l’on note s² ou s²), 
qui fait intervenir l’écart moyen à la moyenne.  
La variance de la population est donnée par :  

Æ( =
(

¨
≠ÄäP − ǟÅ

(
Q

PR,

 
À partir d’un échantillon, on déterminera la variance de l’échantillon (Ĥ² ou σ±²). 

≤±( =
¨

¨− (
≤( 

La variance de l’échantillon vaut 0,00195. Une grandeur plus facilement interprétable que la variance est l’écart-type : 

≤± = z≤±( 

La façon probablement la plus simple (et par conséquent la plus fiable) d’interpréter la variance est rencontrée lors de compa-
raisons. Imaginons que vous ayez 20 mesures de densité provenant d’une couche de schistes ardoisiers et 20 mesures prove-
nant d’une autre couche de schistes ardoisiers. Si l’écart-type du premier échantillon est plus grand que l’écart-type du second, 
il est possible d’en déduire raisonnablement qu’il y a plus de similarité entre les individus du second échantillon qu’entre les 
individus du premier. Cette observation peut conduire à penser que la couche de schistes ardoisiers, d’où est issu le premier 
échantillon est particulièrement hétérogène (du fait de variations minéralogiques, chimiques, …). 
Python possède des modules qui permettent les calculs statistiques. Vous pouvez tester ces quelques lignes pour retrouver les 
valeurs numériques évoquées ci-dessus : 
import numpy as np 
from scipy import stats 
d=[2.69, 2.71, 2.71, 2.71, 2.72, 2.70, 2.71, 2.63, 2.70, 2.69, 2.70, 2.59, 2.64, 2.62, 2.72, 2.75, 2.64, 2.74] 
np.mean(d) #la moyenne 
np.median(d) #la médiane 
max(d)-min(d) #l’étendue 
stats.tvar(d) #la variance (échantillon) 
stats.tstd(d) #ecart-type (échantillon) 
np.var(d) #la variance (population) 
np.std(d) #ecart-type (population) 
stats.mode(d) #le mode est la valeur la plus fréquente dans l’échantillon 

� Écart-type et incertitude 
L’écart-type est certainement la mesure de variabilité la plus habituelle dans le monde scientifique et technique. Par exemple, si 
une datation en géochimie est fournie de la façon suivante :  

553 ± 8 Ma 
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La valeur "8 Ma" (Ma signifie méga-an, c’est-à-dire million d’années) qui se trouve après le signe ± est très certainement l’écart-
type. Ce mode de notation peut se révéler trompeur, car les pratiques diffèrent selon les domaines scientifiques et techniques.  
En fait, dans ce cas, il serait préférable d’écrire "553 (8) Ma" étant donné que la notation "553 ± 8 Ma" peut laisser penser que "± 
8 Ma " correspond aux limites d’un intervalle de confiance. Or, ce n’est pas le cas : la définition d’un intervalle de confiance fait 
intervenir l’erreur standard qui est une mesure de la précision d’une moyenne de population estimée. L’erreur standard quan-
tifie effectivement la variabilité, mais plus particulièrement la variabilité autour de la moyenne. De ce point de vue, ce n’est pas 
une statistique descriptive d’un ensemble de données. L’erreur-standard est toujours plus petite que l’écart-type. Elle corres-
pond à : 

ïS =
≤±

√¨
 

La notation de la forme "grandeur ± variabilité" devrait être réservée à présenter un intervalle de confiance de la grandeur étu-
diée. Ainsi, pour une valeur moyenne obtenue à partir de données gaussiennes, il est possible d’écrire :  

å|bh}}h ± êïS 
Dans ce cas, "± 2se" correspond effectivement à l’intervalle de confiance à 95 % de l’estimation de la moyenne de la population. 

ENTRAINEMENT N°26 (SOLUTION PAGE 53) 
On dispose des données suivantes (vitesses du courant dans une rivière en m/s) : 
0,215 0,227 0,247 0,232 0,277 0,228 0,237 0,262 0,251 0,238 0,229 0,199 0,188 0,268 0,239 0,257  
Calculez : 
-l’écart-type de la population 
-l’écart-type de l’échantillon 
-l’erreur standard. 

� Calculs d’incertitudes 
La valeur exacte d’une grandeur mesurée n’est jamais accessible. C’est un problème que rencontrent toutes les sciences expé-
rimentales, Physique, Chimie, Biologie… Et les Sciences de la Terre n’échappent pas à cette difficulté. Les calculs d’incertitudes 
permettent d’obtenir un intervalle de valeurs dans lequel la valeur vraie est censée se trouver. 
 
En réalité, fournir une valeur numérique ponctuelle sans aucune estimation de l’incertitude qui lui est associée n’est pas satisfai-
sant.  Si je vous dis qu’une roche est âgée de 551 Ma, c’est (peut-être) juste, mais ce n’est pas scientifique. Si je vous dis que l’âge 
d’une roche est 551 ± 11 Ma, la valeur que je vous fournis prend un sens. Cette valeur a déjà plus de sens que, par exemple, 
551 ± 161 Ma. Autrement dit, lorsque vous produisez une valeur qui est issue directement ou indirectement d’une mesure, il est 
impératif de mettre en œuvre tous les efforts nécessaires pour en évaluer l’incertitude. 
L’incertitude peut être de nature statistique (on parle aussi d’incertitude aléatoire). C’est d’ailleurs l’objet de ce chapitre ! On a 
mesuré plusieurs valeurs de densités ou plusieurs valeurs de courant dans une rivière et finalement on observe une dispersion 
des résultats. Cette dispersion a plusieurs causes, parmi lesquelles il est possible de citer la variabilité naturelle (la nature n’est 
pas strictement homogène et constante : à quelques centimètres de distance ou à quelques minutes d’intervalle de temps, la 
grandeur étudiée peut se révéler différente), l’imprécision de l’appareil de mesure ou bien l’imprécision de l’expérimentateur. 
L’incertitude aléatoire affecte la précision de la mesure. 
 
L’incertitude peut aussi être de nature systématique. Ce deuxième type d’erreur peut se révéler difficile à détecter et à corriger. 
L’incertitude systématique peut provenir de l’appareil de mesure ou de l’expérimentateur qui vont commettre une erreur tou-
jours dans le même sens. Imaginons par exemple, une balance mal réglée qui sous-estimerait systématiquement une masse ou 
bien un expérimentateur qui aurait tendance à sous-estimer toujours l’amplitude d’un signal mesurée à l’aide d’une règle gra-
duée. L’incertitude systématique affecte l’exactitude de la mesure. 
 
Certaines mesures sont obtenues par la somme, le produit (ou le rapport) de plusieurs mesures. C’est typiquement vrai par 
exemple pour une mesure de masse volumique : il faut déterminer la masse et déterminer le volume, puis faire le rapport de 
l’un par l’autre. La détermination de la masse n’est pas exempte d’incertitude. Cette remarque s’applique également à la déter-
mination du volume. En dernier ressort, les incertitudes des deux mesures vont se combiner : on parle de propagation des 
incertitudes.  
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Toujours dans un souci de légèreté du texte, je ne donne pas les détails de calcul des formules de propagation des incertitudes : 
retenez seulement que tout cela fait appel à des notions de calcul différentiel (chapitre suivant). Les principales formules utilisées 
dans les calculs de composition des incertitudes sont indiquées dans le tableau suivant (7.2). 
 

Cas considéré Formule 
Somme ou différence : 

Q=a+b 67 = 8(6:)+ + (6-)+ 

Produit ou quotient : 
Q=a/b 

67
|7|

= =>
6:
:
?
+

+ >
6-
-
?
+

 

Puissance : Q=ab 
67
|7|

= |-|
6:
|:|

 

Tableau 7.2 

EXEMPLE : CALCUL D’INCERTITUDE POUR UNE VALEUR INDIVIDUELLE DE MASSE VOLUMIQUE OU DE DENSITE. 
Un échantillon (ici, "échantillon" est employé dans le sens de "prélèvement") de schiste ardoisier montre une densité de 2,69. 
Cette valeur est obtenue par un calcul de masse volumique. La masse de ce prélèvement vaut 780 ± 1 g et son volume est de 
290 ± 5 ml. 
 
Ces incertitudes peuvent être fournies par le fabricant de l’appareil de mesure ou bien correspondre à la moitié de la plus petite 
graduation de l’échelle de mesure de l’instrument.  
 
En dernier ressort, ces valeurs peuvent également être majorées par vous en fonction de l’erreur que vous pensez commettre 
lorsque vous procédez à la mesure. C’est spécifiquement le cas lorsque vous mesurez, par exemple, la longueur d’une faille ou 
fracture sur le terrain : indépendamment de la graduation minimale du mètre ou du décamètre utilisé, des facteurs externes 
(mesure sur une surface irrégulière par exemple) peuvent affecter la précision de la mesure. 
Comme la masse volumique r  est un quotient (masse/volume), pour déterminer l’incertitude de sa mesure, on utilise la formule 
correspondante du tableau 7.2 : 

Δρ
|B|

= =>
ΔM
D
?
#

+ >
ΔV
F
?
#

= =>
1
GHI

?
#

+ >
5
KLI

?
#

= I, ING 

 
Pour obtenir l’incertitude de la masse volumique, on multiplie cette valeur par la masse volumique : 

OP = I. ING × P = I. ING × K, QL = I, IR 

Attention ! : dans ce calcul, on a utilisé une petite astuce. En toute rigueur, la masse volumique, ce sont des kg m-3. La densité 
est une grandeur sans unité (ou sans dimension), puisque c’est la masse volumique du corps solide ou liquide, rapportée à la 
masse volumique de l’eau. Autrement dit, si l’on veut obtenir la valeur de la masse volumique à partir de la densité, il faut multi-
plier par 1000 (car 1 m³ d’eau correspond à 1000 kg). Si la densité du spécimen de roche vaut 2,69, cela signifie que sa masse 
volumique vaut 2690 kg m-3. Cependant, si l’on fournit la masse volumique directement en g cm³, le terme multiplicateur n’est 
plus indispensable : une densité de 2,69 correspond à une masse volumique de 2,69 g cm³. Comme je sais que 1 ml = 1 cm³, 
je trouve les résultats dans les unités adéquates en utilisant les valeurs numériques qui sont fournies dans cet exemple. Dans le 
cas présent, aucune conversion d’unité n’est nécessaire. En résumé, la densité (masse volumique) s’obtient facilement en utilisant 
des unités homogènes : si on considère des g, il faut considérer des cm3 ; si on considère des kg, il faut utiliser des m3. 

Il est possible d’écrire : P = K, QL ± I, IR g cm³. 
On remarque que cette notation peut laisser croire que cette incertitude correspond à un intervalle pour un niveau de confiance 
donné, comme lorsque l’on s’intéresse à une valeur moyenne. Ce n’est évidemment pas le cas ! Seule la répétition des mesures 
permet d’obtenir un intervalle de confiance associé à une probabilité (d’ailleurs, encore faut-il que les mesures soient réparties 
suivant une gaussienne et non biaisées par une éventuelle erreur systématique). 
On note également que l’incertitude déterminée pour un individu est bien plus grande que l’incertitude envisagée pour la valeur 
moyenne. Si on reprend les valeurs du tableau 7.1, on peut chercher à déterminer :  

TUVWXXW ± KY2 
On trouve : P̄ = K, QL ± I, IK g cm³. 
Cela traduit clairement la pertinence de l’approche statistique pour améliorer la précision des résultats. Cet objectif de qualité 
est rendu possible par la reproduction des mesures.  
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Attention ! : quand une mesure doit être arrondie, il faut l’arrondir à la même décimale que l’incertitude. C’est la précision de 
l’incertitude qui guide le choix du nombre de décimales à afficher ! Ainsi, par exemple, si l’incertitude vaut 0,1, il faudra écrire 
"8,2 ± 0,1" et non pas "8,23 ± 0,1". 

ENTRAINEMENT N°27 (SOLUTION PAGE 53) 
Dans la partie orientale des Alpes, le glissement total (D) sur une faille inverse active depuis t=134 ka (± 15 ka) a été estimé  à 
l’aide de données topographiques à 27,0 m (± 8.7 m), déterminez la vitesse moyenne (mm an-1) de glissement (V) et son incer-
titude. 

Glossaire 
Affleurement : Partie d’un terrain visible à la surface de la Terre. 
Altération : Modification des propriétés physico-chimiques des minéraux, et donc des roches, par les agents atmosphériques 
(pluie, neige, …). 
Biais : Démarche ou procédé qui engendre des erreurs dans les résultats d’une étude. 
Densité : Quotient de la masse d’un certain volume d’un corps par la masse du même volume d’un fluide de référence (air ou 
eau). Attention ! : L’anglicisme « densité » qui est souvent employé à tort à la place de « fréquence » en statistique n’a rien à voir 
avec la notion de densité évoquée ici. 
Exactitude : Qualité de ce qui est conforme à la grandeur mesurée.  
Formation géologique : Terrains possédant des caractères communs et constituant un ensemble que l’on juge utile de distin-
guer. 
Gaussienne : Se dit d’un phénomène aléatoire, dont la répartition, faite au hasard, obéit à la loi statistique de Laplace-Gauss 
(courbe en cloche). 
Graduation : Division marquée sur un instrument de mesure. 
Intervalle de confiance : L’intervalle de confiance est une gamme de valeurs susceptibles d’inclure une valeur de la population 
avec un certain degré de confiance. 
Majorer : Augmenter la valeur de quelque chose. 
Pertinence : Qualité de ce qui est pertinent, parfaitement approprié. 
Précision : Proximité des résultats de mesure par rapport à la valeur réelle. Il est important de ne pas confondre exactitude et 
précision : Affirmer qu’une souris pèse moins d’une tonne, c’est exact, mais ce n’est pas précis. 
Reproduction : Action de reproduire. 
Roche saine : Roche non altérée. 
Schiste ardoisier : Roches ayant acquis une schistosité (feuilletage) sous l’influence de contraintes tectoniques. Les schistes ar-
doisiers présentent des gains fins et homogènes, des feuillets minces et sont parfois exploités pour les ardoises (plaques qui 
servent à couvrir les toits). 
Sciences expérimentales : Les sciences expérimentales sont les sciences qui font appel à la méthode expérimentale, par oppo-
sition aux mathématiques et à l’informatique. On les subdivise en sciences physiques (physique et chimie) et sciences de la 
nature (biologie et médecine), la géologie pouvant quant à elle être classée parmi les premières ou les secondes. 
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8 Calcul différentiel 
Le calcul différentiel est considéré comme faisant partie des mathématiques avancées. Peut-être parce que sa découverte si-
multanée par Newton et Leibniz au XVIIe siècle est relativement tardive dans l’histoire de l’humanité.  

� Un exemple de la vie courante 
Soit f(x), une fonction qui satisfait aux deux conditions suivantes : 
- f(x) est continue sur l'intervalle fermé [a,b] 
- f(x) est dérivable sur l'intervalle ouvert ]a,b[ 
Alors, il existe un nombre c tel que a < c < b et f(b) - f(a) = f′(c) (b-a) 
 
Ce théorème (théorème des accroissements finis) est certainement plus compréhen-
sible sous forme graphique : Il peut être illustré par la figure 8.1.  
 
Parmi ses applications, on trouve les calculs de vitesses, comme le montre l’exemple 
suivant.  
Un camionneur parcourt 200 km sur une autoroute dont la vitesse est limitée à 90 km/h 
pour les camions de marchandises. Le camionneur effectue le trajet de 200 km en 2 
heures. À la fin du trajet, le camionneur reçoit une contravention pour excès de vitesse. 
Pourquoi ? 
 
Eh bien, puisque la position du camion est continue sur l'intervalle fermé, dérivable sur 
l'intervalle ouvert, il n'y a pas de discontinuité sur le graphe distance-temps (le camion 
est passé par chaque point sur le chemin du péage au péage), le théorème des ac-
croissements finis s'applique. Il stipule qu'à un moment donné, la vitesse moyenne du 
camionneur doit être égale à la vitesse instantanée du camionneur. Et puisque : 
vitesse moyenne = distance totale (déplacement) / temps total 
 
200 km / 2 heures = 100 km/h 
 
Alors, au moins une fois dans le temps, alors qu'il se trouvait sur l’autoroute, le camionneur roulait à 100 km/h, bien au-dessus 
de la limite de vitesse autorisée pour les camions. 

� Détermination graphique de vitesses de changement 
Comme nous venons de le voir, le calcul différentiel est l’outil utilisé pour déterminer la vitesse instantanée. 
Dans un sol, la concentration en plomb en fonction de la distance à une source de contamination a été mesurée et reportée sur 
un diagramme cartésien : 
 

 

 

 

 

 
 Figure 8.2 

 

Figure 8.1 
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Ce graphe montre que la concentration en plomb diminue très rapidement dans les premiers mètres parcourus et plus lente-
ment ensuite : la courbe présente une pente plus forte à gauche qu’à droite, où elle commence à se rapprocher de l’horizontale.  
 
Quelle est la vitesse instantanée de diminution de la concentration à la distance 25 m ?  
La réponse à cette question passe d’abord par le tracé de la tangente à la courbe au point d=25 m (voir Figure 8.2). Une tangente 
est une ligne droite qui touche la courbe en un seul et unique point (segment tracé en rouge sur la Figure 8.2). La vitesse instan-
tanée de changement en d=25 m est simplement la pente (le gradient) de la tangente en ce point : le rapport DC/DD. 
On trouve -4 ppm/m. 
 
À partir des données numériques suivantes (Tableau 8.1), il est possible de tracer la dérivée de la courbe (Figure 8.3) qui permet 
de connaître les gradients pour toutes les distances. 
 

Distance 
(m) 

Concentration Pb 
(ppm) 

12 172 
17 140 
22 120 
27 100 
32 80 
37 65 
42 55 

Tableau 8.1 

 
 
 
 
 
 
 
 
 

 
 

 

� Dérivées les plus courantes 
Tracer des graphiques peut prendre du temps. Une approche plus rapide et plus rigoureuse consiste à utiliser le calcul différen-
tiel : les gradients peuvent être calculés à l’aide des dérivées d’une fonction ou d’une courbe. 
Le tableau suivant (8.2) présente les dérivées (2e colonne) et les primitives (3e colonne ; les primitives seront évoquées plus en 
détail dans le chapitre suivant) les plus courantes : 
  

Figure 8.3 
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f(u) avec u=u(x) 2[
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_
a_
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ab

 .9 + c78 
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g`(:)
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jk`(_) cos(_)	 opj(_)
a_
ab

 −opj(_) + c78 

opj(_) −sin(_)	 −jk`(_)
a_
ab

 jk`(_) + c78 

st(_) 
1

opj+(_)
	 

1
opj+(_)

a_
ab

 −g`(|opj(_)|) + c78 

opst(_) −
1

jk`+(_)
 −

1
jk`+(_)

a_
ab

 g`(|jk`(_)|) + c78 

uvojk`(_) 
1

√1 − _+
	 

1
√1 − _+

a_
ab

 _uvojk`(_) + 81 − _+ + c78 

Tableau 8.2 
 

Dans ce tableau, les cases en gris indiquent les fonctions qui me paraissent d’usage moins habituel en Sciences de la Terre 
(autrement dit, si vous voulez retenir des formules, ce sont plutôt celles contenues dans les cases à fond blanc). 
Par ailleurs, il faut savoir que la dérivée d’une constante vaut toujours zéro (puisqu’une constante ne varie pas, par définition). 
 
Conventionnellement, la dérivée d’une fonction f est notée : TU

TV
 

où x est l’argument par rapport auquel la dérivation est pratiquée. 
 
Certaines formules dans le tableau 8.2 ci-dessus peuvent paraître compliquées. Un exemple d’application facilite la compréhen-
sion de ces formules : 

EXEMPLE 
Admettons que l’on souhaite dériver la fonction f=x3. Il faut remarquer que cette fonction correspond à un dans le tableau. Le 
tableau indique que la dérivée correspond dans ce cas à : 

A=I$<
?=

?w
 

Par identification pour l’expression un, x va correspondre à u et 3 va correspondre à n. Par conséquent, la dérivée s’écrira : 

3wW$<
?w

?w
 

C’est-à-dire finalement : 3 x²  

ENTRAINEMENT N°28 (SOLUTION PAGE 53) 
En utilisant le raisonnement précédent, indiquez ce que valent les dérivées de : 
x²  
x 

ENTRAINEMENT N°29 (SOLUTION PAGE 53) 
Trouvez les dérivées des fonctions suivantes :  
v=x12 (calcul par rapport à x) 
w=ez (calcul par rapport à z) 
z=xw (calcul par rapport à x, avec w constant) 
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� Dérivées d’équations utilisées en Sciences de la Terre 
Des équations que l’on peut rencontrer en Sciences de la Terre sont souvent plus compliquées que les "dérivées courantes". 
Prenons par exemple, le cas déjà évoqué, du géotherme de conduction dans une lithosphère. Considérons l’équation suivante : 
 

Ñ = 10 + 9,1Ç + 48,48Ä1 − 7$@ X⁄ Å 
 
Si l’on souhaite déterminer le gradient à une profondeur donnée, il faut d’abord déterminer l’expression de la dérivée en fonc-
tion de la profondeur. 

?Ñ

?Ç
= 9,1 + ≥

48,48

8
¥7$@ X⁄

?Ñ

?Ç
= 9,1 + 6,067$@ X⁄

 

 
Pour obtenir le gradient à la profondeur z=10 km, il suffit d’introduire cette valeur numérique dans l’équation, on trouve : 

?Ñ

?Ç
= 9,1 + 6,067$<9 X⁄ = 10,8°tVG$< 

Attention ! : il n’est pas possible de déterminer le gradient si l’on introduit d’abord z=10 km dans l’équation et qu’on tente en-
suite de dériver l’expression obtenue. Il faut respecter l’ordre : on dérive d’abord et on calcule la valeur particulière ensuite. 

� Règles de dérivation 
Pour pouvoir dériver des fonctions plus compliquées que les "fonctions de base", trois règles au moins sont à connaître : 
- la règle des produits 

?(=µ)

?w
= = ≥

?µ

?w
¥ + µ ≥

?=

?w
¥ 

- la règle des quotients 

?(= µ⁄ )

?w
=
µ ∂
?=
?w
∑ − = ∂

?µ
?w
∑

µ4
 

- la règle de dérivation des fonctions composées 
?E

?w
=
?E

?>

?>

?w
 

EXEMPLE 
Pour calculer la dérivée de y=x²cos(x), on va utiliser la règle des produits : 
 

?(w4 cos(w))

?w
= w4

?IDH(w)

?w
+ cos(w)

?w4

?w
 

 
?(w4 cos(w))

?w
= −w4 sin(w) + 2w cos(w) 

 
On vient d’appliquer la règle en considérant que u=x² et v=cos(x) 
 

EXEMPLE 
Pour calculer la dérivée de y=cos(x²), on va utiliser la règle de dérivation des fonctions composées : 

Ç = w4

?IDH(w4)

?w
=
?IDH(Ç)

?w
=
?IDH(Ç)

?Ç

?Ç

?w
?IDH(w4)

?w
= −H@A(Ç)

?w4

?w
= −2wH@A(w4)

 

ENTRAINEMENT N°30 (SOLUTION PAGE 53) 
Trouvez les dérivées de : 
w=5x² +3xsin(x) 
y=x³ ex

 
 

z=4x² cos(x) 

D.
 A

MORE
SE

, p
ro

vis
oi

re



D. Amorese, unicaen, 17/10/22            43 

� Applications des dérivées 
Les dérivées sont extrêmement importantes dans le monde scientifique actuel où l’informatique a pris une place majeure. Les 
logiciels de modélisation et de simulation numérique sont quasiment tous basés sur le calcul de dérivées pour résoudre des 
équations et des systèmes d’équations. Par exemple, l’algorithme principal de localisation des séismes, connu sous le nom de 
méthode de Geiger (en usage depuis 1910), est basé sur le calcul de dérivées. Présenter ces méthodes numériques dépasse le 
cadre de ce livret. L’importance des dérivées dans les problèmes d’optimisation est liée à leur capacité de détermination des 
minima et maxima d’une fonction.  
 
En effet, les dérivées possèdent les propriétés suivantes : 
- En un minimum ou un maximum d’une fonction, la dérivée première s’annule 
- En un minimum d’une fonction, la dérivée seconde est positive 
- En un maximum d’une fonction, la dérivée seconde est négative 
Les yeux sur la Figure 8.4 correspondent au signe de la dérivée seconde. 
 
 
 

 
 
 
 
 
À ce stade, il faut expliquer les termes "dérivée première" et "dérivée seconde" :  
- La dérivée d’une fonction est appelée dérivée première pour la distinguer des dérivées d’ordre supérieur. 
- Parmi les dérivées d’ordre supérieur, on trouve la dérivée seconde qui est la dérivée de la dérivée. 
Les relations entre dérivées et les minima maxima d’une fonction sont illustrées sur la Figure 8.5 qui présente la fonction cosinus 
et ses dérivées (première et seconde). On remarque bien que la dérivée première s’annule pour les extrema de la fonction 
cosinus. On note bien aussi que les signes de la dérivée seconde diffèrent selon que l’extremum est un minimum (alors la dérivée 
seconde est positive) ou un maximum (dans ce cas, la dérivée seconde est négative). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

EXEMPLE 
A partir des travaux de Jeffreys, la viscosité dynamique h (Pa s = kg m-1 s-1) d’une lave peut être évaluée à l’aide de l’équation 
suivante : 

Figure 8.4 
 

Figure 8.5 
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ë =
Ö,∏π∫(õ)ª(

}Ü
 

où V est la vitesse d’écoulement (m s-1), 
r est la masse volumique exprimée en kg m-3, 
g est la valeur de la pesanteur normale (9,81 m s-2), 
a est la pente de la surface d’écoulement, 
H est l’épaisseur de la couche de lave, en mètres, 
et n est une constante (elle vaut 3 pour un écoulement étalé, 4 pour un écoulement étroit, canalisé). 
 
Sur un volcan dont les flancs ont une pente moyenne de 15°, un écoulement de 12 m d’épaisseur progresse sans être canalisé. 
Sachant que le densité moyenne de cette lave chaude est estimée à 2,6 et que l’on évalue la vitesse d’écoulement à 0,3 m s-1, on 
arrive à calculer que la viscosité dynamique de la coulée est de 10-6 Pa s. 

ENTRAINEMENT N°31 (SOLUTION PAGE 53) 
Essayez de retrouver le résultat de l’exemple précédent. 

Localement, la pente prend une valeur de 10° et la coulée s’épaissit pour atteindre une épaisseur de 17 m. On détermine que 
la nouvelle vitesse d’écoulement vaut 0,4 m s-1 (la densité vaut toujours 2,6 et la viscosité dynamique 10-6 Pa s). 

ENTRAINEMENT N°32 (SOLUTION PAGE 53) 
Essayez de retrouver le résultat précédent. 

On souhaite étudier comment évolue la vitesse en fonction d’un changement d’épaisseur ou d’un changement de pente. On a :  

q =
º>H@A(£)Ω4

Aæ
 

La dérivée de V en fonction de H correspond à : 
?q

?Ω
=
2º>H@A(£)Ω

Aæ
 

Sa valeur lorsque H vaut 12 m vaut : 
?q

?Ω
=
2 × 2600 × 9,81 × H@A(15°) × 12

3 × 10Y
= 	0,05	GH$< G⁄  

La dérivée de V en fonction de a correspond à : 
?q

?£
=
º>IDH(£)Ω4

Aæ
 

Sa valeur lorsque a vaut 15° vaut : 
?q

?£
=
2600 × 9,81 × IDH(15°) × 124

3 × 10Y
= 	1,18	GH$< ;<?⁄ = 	0,02	GH$< °⁄  

 
On remarquera que la valeur de gradient que l’on obtient est une valeur par radian : lorsque l’on dérive ou intègre une fonction 
qui implique des valeurs angulaires, on travaille impérativement en radians. Pour convertir des radians en degrés, il suffit de 
multiplier par 57,3, puisque l’on sait que 180° = p radians. Concernant le résultat précédent, multiplier 1,18 par 57,3 serait une 
erreur : 1,18 m s-1 est la valeur de variation de vitesse pour un radian. Pour un degré, la variation de vitesse est 57,3 fois plus 
petite que 1,18 étant donné que le degré est 57,3 fois plus petit que le radian. On trouve finalement 0,02 ms-1°-1. 
Ces petits calculs de dérivées nous montrent que pour les valeurs d’épaisseurs et de pentes considérées, une variation d’un 
mètre d’épaisseur a environ 2,5 (0,05/0,02=2,5) fois plus d’effet sur la vitesse qu’une variation d’un degré de pente. Tout n’est 
peut-être pas aussi simple dans la réalité, car on peut facilement imaginer que les paramètres ne sont pas indépendants et 
interagissent aussi avec d’autres termes (densité et viscosité) de l’équation de départ. 
 

Glossaire 
Algorithme : Ensemble de règles opératoires dont l’application permet de résoudre un problème énoncé au moyen d’un 
nombre fini d’opérations. 
Extremum : Maximum ou minimum relatif d’une fonction. 
Jeffreys : Sir Harold Jeffreys (1891-1989) était un mathématicien, statisticien, géophysicien et astronome britannique. Opposé 
jusqu’à la fin de sa vie à la théorie de la tectonique des plaques, Jeffreys a été néanmoins un contributeur majeur à l’avancée de 
la géophysique. La sismologie lui doit en particulier les tables de propagation des ondes sismiques, élaborée en 1940 en colla-
boration avec le mathématicien Keith Edward Bullen. En 1924, on lui doit également la phrase pertinente : "Si la géophysique 
nécessite des mathématiques pour son traitement, c’est la Terre qui est responsable et pas le géophysicien". 
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Leibniz : Gottfried Wilhelm Leibniz (1646-1716), mathématicien, philosophe, scientifique et diplomate allemand. 
Lithosphère : Couche superficielle de la Terre, relativement rigide, d’épaisseur variable (entre 20 km sous les dorsales océa-
niques à plus de 200 km sous les boucliers continentaux), comprenant la croûte et une partie du manteau supérieur. 
Modélisation : Élaboration de modèle, représentation d’un phénomène à l’aide d’un système qui possède des propriétés ana-
logues à ce phénomène. Tous les modèles décrivent imparfaitement la réalité, mais certains peuvent être utiles pour la com-
prendre. 
Newton : Sir Isaac Newton (1642-1727), mathématicien, physicien, astronome, théologien et auteur anglais. 
Optimisation : L’optimisation est une branche des mathématiques cherchant à modéliser, à analyser et à résoudre analytique-
ment ou numériquement les problèmes qui consistent à minimiser ou maximiser une fonction sur un ensemble.  
Primitives : Pour une fonction f définie sur un intervalle de ℝ et à valeurs réelles ou complexes, fonction F qui est dérivable et 
telle que sa dérivée F′ soit égale à f. 
Simulation numérique : Contrairement à ce que pourrait laisser croire le bon sens, la simulation numérique ne consiste pas à 
faire semblant de calculer. Bien au contraire, c’est souvent une activité qui est très exigeante en calculs. Elle a pour objectif la 
représentation du comportement d’un processus physique, industriel, biologique, économique ou militaire au moyen d’un mo-
dèle informatique dont les paramètres et les variables sont les images de ceux du processus étudié.  
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9 Intégration 
En Sciences de la Terre, les calculs de surfaces et de volumes sont des activités très courantes. Ce sont des applications du calcul 
intégral. 

� Généralités 
L’intégration est la fonction inverse du calcul de la dérivée. Ainsi, l’intégrale de 2x est x², puisque la dérivée de x² est 2x.  
Ceci n’est pas tout à fait exact, puisqu’une constante (constante d’intégration) pourrait être impliquée, mais cette façon de pré-
senter les intégrales permet de comprendre rapidement leur signification. 
 
La notation de l’intégrale comprend le signe ∫  à gauche et le "signe" "dx" à droite (quand on procède à une intégration par 
rapport à x) de la fonction à intégrer, ainsi : 

¡H@A (=)?= = −IDH(=) + t67 

représente l’intégrale de sin(u). On voit que ce résultat comprend une constante. Cela s’explique tout simplement parce que la 
dérivée d’une constante est nulle. Par conséquent, il est habituel de rajouter "+ Cte" lorsque l’on intègre. Cette constante peut 
valoir 0, mais aussi 4, 12, 23, 100, 2 milliards, … Quelle qu’elle soit, cela ne change rien à la valeur de la dérivée. 
Vous retrouvez les intégrales des fonctions usuelles dans le tableau 8.2 du chapitre précédent. 

� Règles d’intégration 
Pour pouvoir intégrer des fonctions plus compliquées que les "fonctions de base", trois règles au moins sont à connaître : 

- Si une fonction est multipliée par une constante, l’intégrale de la fonction est multipliée par cette constante 

- L’intégrale d’une somme est la somme des intégrales  

- L’intégrale d’une fonction composée est possible par un changement de variable. Si la fonction à intégrer est f(g(x)), très sou-
vent le changement de variable u=g(x) va permettre le succès de l’intégration 

EXEMPLES 

¡!( ä! +¡!% ä! =
!%

à
+
!&

á
+ ¬ìh 

 

¡(ê!(ä! = (ê
!%

à
+ ¬ìh = á!% + ¬ìh 

 

 

� Intégration définie 
On dit que l’intégration est définie lorsque la valeur de la constante est connue. C’est en particulier le cas lorsque des limites 
d’intégration sont fournies. Considérons un cas très simple : 

√ = ¡ w?w
Z

<
 

On intègre : 

√ = ƒ
w4

2
+ t67≈

<

Z

 

On substitue les limites à x : 
	

√ = ú
44

2
+ t67ù − ú

14

2
+ t67ù 

F = 8 + t67 − 0,5 − t67 
F = 7,5 

ENTRAINEMENT N°33 (SOLUTION PAGE 53) 
Évaluez l’intégrale définie suivante : x = ∫ z;

<
]#2] 
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� Intégration par parties 
Une technique très utile pour intégrer des expressions compliquées consiste à utiliser l’intégration par parties, en utilisant l’équa-
tion suivante : 

¡ =?µ
[

H
= [=µ]H

[ −¡ µ?=
[

H
 

EXEMPLE : LE CALCUL DE ∫ ]&
<

W=2] 
Par identification avec l’équation d’intégration par partie : 

« = !	 → 	ä« = ä!
ä… = h8ä!	 → 	… = h8

 

On applique : 
 

¡ !h8
/

2
ä! = [!h8]2

/ −¡ h8
/

2
ä!

¡ !h8
/

2
ä! = [!h8]2

/ − [h8]2
/ = [(! − ()h8]2

/

¡ !h8
/

2
ä! = (´ − ()h/ − () − ()h2 = 0h/ + ( = ê)(ü, (áá

 

 

 

� L’intégration est une somme  
Bien souvent en Sciences de la Terre, l’intégration va être utilisée pour calculer des volumes. Cela peut être : 
- le volume d’une montagne ; 
- le volume de téphras produits par un volcan ; 
- le volume de sédiments contenus dans un lac ou déposés dans un delta ; 
- le volume d’un lac de barrage ; 
- un volume érodé ; 
- le volume d’un glacier ; 
 
Les intégrales vont permettre de faire la somme des éléments de volume de l’objet étudié. 

EXEMPLE 
Un mode d’estimation du volume de téphras produit par un volcan se base sur la relation : 

  =  2h!ÀÄ−5√ÃÅ 
avec E, l’épaisseur de la couche de téphras ; S, la surface de l’isopaque considérée, E0, l’épaisseur à la distance 0 (lorsque S=0) 
et k, une constante. 
 
Cette équation traduit la décroissance exponentielle de l’épaisseur avec la distance (assimilable à la racine carrée de la surface). 
Le volume de téphras va correspondre à : Ü = ∫  

\
2 äÃ 

C’est-à -dire la somme des produits "Epaisseur x Surface".  
 
On peut développer l’équation : 

Ü = ¡  2

\

2
h!ÀÄ−5√ÃÅäÃ

Ü =  2¡ h!À
\

2
Ä−5√ÃÅäÃ

 

 
Il faut procéder à un changement de variable pour calculer cette intégrale, qui est l’intégrale d’une fonction composée. On 
introduit la variable u : 

« = −5√Ã 
Maintenant, il faut déterminer du : 

ä« = −
(

ê
5
(

√Ã
äÃ = −

(

ê
5≥
−5

«
¥äÃ =

(

ê

5(

«
äÃ 
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On introduit u et du dans : Ü =  2 ∫ h!À
\
2 Ä−5√ÃÅäÃ 

On arrive à : Ü =  2 ∫ h!À
\
2 («)

(]

^#
ä« 

On "sort" les termes constants du signe intégrale : F = #>!
?" ∫ \@

<
W]{(\)2\  

Précédemment, on a vu comment calculer l’intégrale de x exp(x). On en déduit que : 

Ü =
ê 2

5(
¡ «
\

2
h!À(«)ä« =

ê 2

5(
ÕÄ−5√Ã − (Åh!ÀÄ−5√ÃÅŒ

2

\
 

 
Il est possible de calculer cette intégrale : dans cette intégrale, lorsque S tend vers l’infini, le terme exponentiel tend vers 0. 
Lorsque la surface S est égale à 0, l’exponentielle vaut 1. 
On va arriver finalement à :  Ü = (_<

^#
 

 
Pour aboutir à ce résultat, on a procédé à un changement de variable. Lors d’une telle opération, il faut veiller aussi à adapter 
éventuellement les bornes d’intégration.  
Dans le cas présent, cette adaptation n’est pas nécessaire : L’utilisation de u ou de S ne modifie pas les bornes (en l’occurrence, 
quand S=0, u=0 et quand S tend vers l’infini, u tend aussi vers l’infini). 
Bien évidemment, il existe des outils de cartographie informatisée (le Système d’Information Géographique ArcGIS et son ex-
tension 3D Analyst, par exemple) qui permettent de calculer des volumes à partir de valeurs d’épaisseurs de couches. Néan-
moins, cette approche nécessite un nombre substantiel de valeurs pour fournir des résultats exacts. La formule qui vient d’être 
démontrée est bien moins exigeante (si tant est que le modèle de décroissance exponentielle soit réaliste) : seules quelques 
mesures (deux valeurs seulement pourraient suffire) sont nécessaires pour déterminer la valeur de k et de EO. 
 
La détermination de k et de EO nous renvoie au chapitre sur la relation entre deux variables. En effet, on se rend compte que 
l’équation :    =  2h!ÀÄ−5√ÃÅ 
peut-être linéarisée par l’utilisation de la fonction logarithme : 

{|,( ) = {|,∂ 2h!ÀÄ−5√ÃÅ∑ 
œ–—(“) = œ–—(“2) + œ–— ∂”‘’Ä−÷√ÃÅ∑ 

œ–—(“) = œ–—(“2) − ÷√Ã 
Cela signifie qu’un graphe du logarithme de l’épaisseur de téphras en fonction de la racine carrée de la surface va correspondre 
à une droite de pente -k et d’ordonnée à l’origine log(E0). Comme indiqué précédemment, deux points de mesure pourraient 
donc suffire pour déterminer k et EO. 
Admettons que le graphe en question soit le suivant sur lequel la droite est construite à partir de trois points seulement : (170 
km ; 1 cm), (275 km ; 0,25 cm) et (340 km ; 0,1 cm). 
 

 
 

Figure 9.1 
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Pour l’exercice, le graphe a été simplifié à l’extrême. Habituellement, on essaie malgré tout de tracer la droite à partir d’au moins 
une dizaine de points de mesure.  
À partir de ce graphe, on voit que E0 vaut 10 cm. Il est possible de calculer k, l’opposé de la pente : 
 

5 =
{|,(). () − {|,(()

(3) − àá)
= ), )(à	0á	5å$, 

 
Dans le cas considéré, le volume de téphras est par conséquent estimé à : 
 

Ü =
ê 2

5(
=
ê × () × ()$`

), )(à0á(
= (, (	5å% 

 
Comme il a déjà été écrit au chapitre 7, ce type de réponse que l’on peut qualifier de "ponctuelle" est incomplète scientifique-
ment : l’intervalle d’incertitude est manquant ! L’évaluation de ce dernier pourrait se faire, par exemple, en estimant l’incertitude 
qui existe sur le tracé de la droite de la Figure 9.1. Ainsi, on obtiendrait les incertitudes sur k et E0, qui seraient finalement propa-
gées sur V. 
 

EXEMPLE 
La capacité de stockage en eau d’un barrage est généralement évaluée par la méthode des cônes. 
Le volume du cône de hauteur h et de sommet O, entre la côte (altitude) C1 et la côte C2, est la somme de disques d’épaisseur 
infinitésimale dz et de côte z : 

Ü = ¡ Ã
a#

a%

(◊)ä◊ 

Il faut pouvoir exprimer la surface S en fonction de z. Cela est possible en considérant la relation de proportionnalité qui existe 
dans un cône : b

c
=

d

e
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9.2 
On peut donc écrire que : | = A

B
} 

Et finalement : 

Ü = ¡ Ã
a#

a%

(◊)ä◊ = ¡ â
a#

a%

≥
ÿ◊

ª
¥
(

ä◊ = â≥
ÿ

ª
¥
(

¡ ◊(
a#

a%

ä◊ 

 

Ü = â≥
ÿ

ª
¥
(

¡ ◊(
a#

a%

ä◊ =
âÿ(

ª( ƒ
◊%

à
≈
a%

a#

=
âÿ(

àª( Ä¬(
% − ¬,

%Å 

La différence des cubes : 
c% − d% = (c − d)Äc( + cd + d(Å 

permet d’écrire : 

D.
 A

MORE
SE

, p
ro

vis
oi

re



D. Amorese, unicaen, 17/10/22            50 

Ü =
âÿ(

àª( (¬( − ¬,)Ä¬(
( + ¬,¬( + ¬,

(Å 

En reprenant . = cd

e
, on arrive à : 

¬, =
ª

ÿ
.,

¬( =
ª

ÿ
.(

 

Pour réécrire V : 

Ü =
âÿ(

àª( Ÿ⁄ƒ≥
ª

ÿ
.(¥

(

+ ≥
ª

ÿ
.,¥ ≥

ª

ÿ
.(¥ + ≥

ª

ÿ
.,¥

(

≈ 

Ü =
âÿ(

àª( Ÿ⁄
ª(

ÿ(
Ä.(

( + .,.( + .,
(Å =

â

à
Ÿ⁄Ä.,

( + .,.( + .(
(Å 

 
On connaît la surface d’un disque de rayon r : Ã = â.( 
 
On arrive à : 

Ü =
â

à
Ÿ⁄Ä.,

( + .,.( + .(
(Å =

Ÿ⁄

à
Äâ.,

( +â.,.( +â.(
(Å 

Finalement : 

Ü =
Ÿ⁄

à
ÄÃ, +zÃ,Ã( + Ã(Å 

 
Considérons que la surface d’un lac de barrage soit initialement de 135 km². Si la hauteur d’eau diminue de 3 m et que la nou-
velle surface observée par satellite est de 128 km², quel est le volume d’eau perdu ? 
Ce volume vaut : 

Ü =
à

à × ()))
Ä(à0 + √(à0 × (êü + (êüÅ = ), à25å% 

 
La division par 1000 de Dh se justifie par le souhait d’obtenir le résultat en km³ (de cette façon, on multiplie des km par des km²). 
On rappelle que ce résultat est un résultat scientifique partiel, car l’intervalle d’incertitude est manquant dans cette réponse. Cet 
intervalle peut par exemple être évalué en considérant les incertitudes qui existent sur la variation de hauteur d’eau et sur les 
déterminations des surfaces. On rappelle également que la valeur trouvée demeure obligatoirement une estimation, puisqu’elle 
dépend du modèle géométrique choisi (en l’occurrence, celui du cône) : en plus de l’incertitude aléatoire, une incertitude épis-
témique entache la qualité du résultat. 

Glossaire 
Bornes d’intégration : Limites de l’intervalle d’intégration. 
Entacher : Abaisser la valeur. 
Incertitude épistémique : Incertitude quant au modèle et aux paramètres d’un problème. 
Isopaque : De même épaisseur. 
Téphras : Ensemble de matières éjectées lors d’éruptions volcaniques explosives et accumulées autour du centre éruptif. 
Volume érodé : Volume de sol et de roche qui a été érodé. Pour une vallée, l’estimation du volume érodé est obtenue par une 
soustraction du volume du relief actuel au volume du relief initial. 
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10	Corrections des entrainements 
N° 1 : 52 x 54=56 ; (52)4=58 ; 32+54=9 + 625=634 ; (To3)4=(103)4=1012 
N° 2 : 1000=10³ ; 2000=2 10³ ; 2500=2,5 10³ ; 2523=2,523 10³ ; 23 000 000 =2,3 10⁷ ; 7 milliards = 7 109 
N° 3 : 0,001=10-3 ; 0,002 = 2 10-3 ; 0,0025 = 2,5 10-3 ; 0,002523 = 2,523 10-3 ; 0,0 000 023 = 2,3 10-6 
N°4 : 2,5 10⁹ + 1,5 10⁹ = 4 10⁹ ; 2,5 10⁹ + 1,5 10⁸ = 2,5 10⁹ + 0,15 10⁹ = 2,65 10⁹ ;  
2,5 10⁹ + 1,5 1010 = 0,25 1010 + 1,5 1010 = 1,75 1010 ; M/V = 5,95 1024/1,08 1021 = 5,95 10³/1,08 = 5,51 10³ kg/m³  
N°5 : Age = 1000 x 30/100 = 3 10⁴/10² = 300 ans 
N°6 : Q x C = 9,3 x 4,2 x 1000 = 39 060 mg/s 
Il faut impérativement savoir qu’un m³ correspond à 1000 l (cela fait partie de la culture scientifique de base) 
1 an correspond à 365,25 x 24 x 3600 = 31 557 600 s. 
La quantité de silice transporté en 1 an vaut : 39 060 x 31 557 600 = 1,2 1012 mg 
Le résultat est plus compréhensible en tonne : 1,2 1012 x 10-9 = 1200 tonnes. 
N°7 : On a vu précédemment qu’il y a 31,6 10⁶ s dans une année. 31,6 10⁹/31,6 10⁶ = 10³ = 1000 ans 
Cela correspond à 31,6 milliards de secondes.  
1% = 1 10-2 ; 1 ppm = 1 10-6. Par conséquent, 1% = 10⁴ ppm donc 0,01% = 0,01 x 10⁴ = 100 ppm 
N°8 : Pour s=0, C =10 MPa ; T= 0,8 s + 10 
Voici un petit programme Python pour tracer le graphe : 
 
import matplotlib.pyplot as plt 
T=[10,18] 
s=[0,10] 
plt.plot(s, T, '-b') 
plt.xlabel('Pression') 
plt.ylabel('T') 
plt.show() 
 
N°9 : a=2, b= -10, c=6 
N°10 : La porosité vaut 0,15 
N°11 : log5(x)=2, cela signifie que x=5²=25 
N°12 : D’après l’équation de conversion des logarithmes (page 10), log2(a)=log10(a)/log10(2)=log10(a)/0,30103. La concentration 
vaut 4,42 ppm. 
N°13 : On a profondeur=âge/k. On peut modifier cette équation en prenant les inverses : (1/profondeur)=(k/âge). Si on multiplie 
chaque terme par "âge" : (âge/profondeur)=(âge k/âge). Cela revient à : k=âge/profondeur=3000/3=1000 ans/m. 
N°14 : On peut écrire 70 = -43,5 (Dh)² + 159,8 Dh + 0,5. Sous une autre forme : -43,5 (Dh)² + 159,8 Dh - 69,5 = 0. Pour cette 
équation, la racine carrée de b² – 4 ac vaut 115,9. Les 2 solutions de l’équation du second degré sont 3,17 km et 0,5 km. 
N°15 :  On utilise ~ = �g` C#

C
.  

On trouve pour z : ~ = 2g` (,E

(,FG
= 1,4ÅÇ 

N°16 : On a t=2h de/dt. On peut écrire h=t/(2de/dt). La contrainte t s’exprime en Pascal. Le Pascal est une force par unité de 
surface. Par conséquent, le Pascal est de dimension MLT-2L-2, c’est-à-dire ML-1T-2. 
Dans l’expression de la viscosité, cette contrainte est divisée par la vitesse de déformation. La déformation étant sans dimension, 
cela signifie que la contrainte est simplement multipliée par le temps : la viscosité dynamique est de dimension ML-1T-1. Dans le 
langage courant, cela correspond à kg m-1 s-1. L’unité qui correspond à cette dimension dans le système international est le 
pascal seconde (Pa s). 
N°17 : On va pouvoir écrire tan(46°)=130/D. Ainsi D, la distance horizontale qui sépare l’affleurement du bord de la falaise vaut 
125,5 m. 

N°18 : 70° + 70° + g =180° donc g=40° ; 3/sin(30°)=4/sin(b) donc b= 41,8° ; a² = 4² + 2² – 2 x 4 x 2= 4 donc a=2 ; cos(90°)=0 donc 
l’expression devient a² = b² + c². 
N°19 : a² = 8² + 7² – 112 cos(38°)=25 donc a = 5 
b/sin(b)=a/sin(a)=5/0,62=8,1 
8/sin(b)=8,1. On en déduit que b=81° et par conséquent que g=61° puisque 38+81+61=180.  
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b/sin(b)=c/sin(g)=a/sin(a)=6/sin(38°)=9,7. On en déduit que b=55°. Dans ce cas, g=87° et alors c peut être déterminé par 
9,7sin(87°). On trouve c=9.7 km. 
Pour la troisième question de cet exercice, les solutions sont : b=5,6 km, g=82° et c=6,4 km. 
N° 20 : On part de l’équation É = s:`,) Ñ7H3IJ

$K
LM3(N)

Ö. On trouve b =42°. 
N° 21 : la masse : scalaire ; l’accélération de la pesanteur : vecteur ; la contrainte cisaillante : vecteur ; l’âge : scalaire ; la ligne qui 
relie 2 points sur la surface de la Terre : vecteur. 
N° 22 : 

D cos(D) sin(D) 

321° 0,78 -0,63 

8° 0,99 0,14 

357° 1 -0,05 

19° 0,95 0,33 

339° 0,93 -0,36 

S 4,65 -0,57 

 
Ǖ = s:`,) >

−0,57
4,65

? = −7° = 353° 

 
Le calcul de la moyenne arithmétique donnerait une valeur de 209° : résultat faux et complètement différent de 353°. 
N° 23 : 

a cos(a) sin(a) 

10° 0,98 0,17 

354° 0,99 -0,10 

8° 0,99 0,14 

S 2,96 0,21 

 
É̄ = s:`,) >

0,21
2,96

? = 4° 

N° 24 :  
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N° 25 : 
 

 

 

 

 

 
 
N° 26 :  
ä = 0,0230
ä̂ = 0,0238
j8 = 0,006

 

N° 27 : V=27 103/134 103=0,2 mm an-1    OP
P
= åç )G

)FQ
é
+
+ çR,E

+E
é
+
= ±0,34 

DV=0,2 x 0,34=0,07 mm an-1 
N° 28 : f’(x²)=2x ; f’(x)=1 ; f’(1)=0 
N° 29 : f’(v)=12 x11 ; f’(w)=ez ; f’(z)=wx(w-1) 
N° 30 : f’(w)=10x + 3sin(x) + 3xcos(x) ; f’(y)=3x² ex + x³ ex ; f’(z)=8xcos(x) – 4x²sin(x) 
N° 31 :  
è =

êtjk`(É)ë+

`í
=
2600 × 9,81 × jk`(15°) × 12+

3 × 0,3
≃ 10!î:j 

N° 32 :  
í =

êtjk`(É)ë+

`è
=
2600 × 9,81 × jk`(10°) × 17+

3 × 10!
≃ 0,4Çj,) 

N° 33 :  

ï = ∫ 3G
(

b+ab = ÑF:
%

F
Ö
(

G

= [bF](G = 5F − 0F = 125  
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11	Formulaire 
Trigonométrie : 

 
cos(0) = 1	 	 cos(π) = −1	 	 sin(0) = 0	 	 sin(π) = 1 

 
OP = OMcos(θ)	 	 PM = OMsin(θ) 

 

tg(θ) =
sin(θ)

cos(θ)
	 	 cos4(θ) + sin4(θ) = 1	 	 Iotg(θ) =

1

tg(θ)
 

 
1

cos4(θ)
= 1 + t>4(θ)	 	

1

sin4(θ)
= 1 + cot>4(θ) 

 
sin(2θ) = 2sin(θ)cos(θ)	 	 cos(2θ) = 2cos4(θ) − 1 

 
 
 
Identités remarquables : (< + o)4 = <4 + o4 + 2ab	 	 (< − o)4 = <4 + o4 − 2ab	 	 <4 − o4 = (< + o)(< − o)  
 
Logarithme népérien :	 ln(w) = ∫ ?6/6	 (w > 0)	 	 	 mA(1) = 0	 	 	 mA(7) = 1	 	 	 7 = 2,71828…

V
< 	

ln(ab) = ln(a) + ln(b)	 	 	 mn(a/b) = ln(a) − ln(b)	 	 	 ln(af) = mln(a)	 	 	 mogg(x) =
ln(x)

ln(a)
	 (a > 0, a ≠ 1) 

Exponentielle : 

y = eh ⇔ x = ln(v), y ∈ 0,+∞	 	 7H#[ = 7H7[	 	 7$H =
1

7H
	 	 79 = 1	 	 7iI(V) = x	 avec	 x > 0	 	 mn(7V) = x 

 
Calculs d’incertitudes : 
Somme ou différence : Q = a + b → ∆Ó = z(∆<)4 + (∆o)4  Puissance : Q = <[ →

	kl	
|l|

= |o|
kH
|H|

 

Produit ou quotient : Q = <
o$ →

ΔQ
|l|
= ∂

Δa

H
∑
4
+ ∂

Δb

[
∑
4
 

 
Développements limités usuels en 0 : 

7wC(w) = 1 +
w

1!
+
w4

2!
+⋯+

wI

A!
+ D(wI) 

(1 + w)K = 1 + £w +
£(£ − 1)

2!
w4 +⋯+

£(£ − 1). . . (£ − A + 1)

A!
wI + D(wI) 

1

1 − w
= 1 + w + w4 +⋯+ wI + D(wI) 

H@A(w) = w −
wW

3!
+
wB

5!
+⋯+

(−1)Iw4I#<

(2A + 1)!
+ D(w4I#<) 

IDH(w) = 1 −
w4

2!
+
wZ

4!
+⋯+

(−1)Iw4I

(2A)!
+ D(w4I) 

 
Règles de calcul concernant les puissances :  <I × <r = <I#r (<I)r = <I×r        << 4⁄ = √< 
 

Dérivées partielles : Si f est une fonction de deux variables x, y, la dérivée partielle de f par rapport à x est notée  st
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Dérivées et intégrales communes : 
f(u) avec 
u=u(x) 

2[
2]

 ^[(\)2\ 

_3 `_(3,))
a_
ab

 _(36))

` + 1
+ c78	(` ≠ −1) 

_,) −>
1
_+
?
a_
ab

 g`|_| + c78 
g`_ 1

_
a_
ab

 _g`_ − _ + c78 
.9 .9

a_
ab

 .9 + c78 
:: ::g`(:)	(: > 0) ::

g`(:)
	+ c78	(: > 0	; 	: ≠ 1) 

jk`_ opj(_)
a_
ab

 −opj_ + c78 
opj_ −jk`(_)

a_
ab

 jk`_ + c78 
st_ 1

opj+_
a_
ab

 −g`(|opj_|) + c78 
opst_ −

1
jk`+_

a_
ab

 g`(|jk`_|) + c78 
uvojk`_ 1

√1 − _+
a_
ab

 _uvojk`_ + 81 − _+ + c78 
 

Préfixes du Système international d’unités : 
 

ALPHABET GREC 
 

 

10n Préfixe Symbole Désigna-
tion 

1012 téra T Billion 

109 giga G Milliard 

106 méga M Million 

103 kilo k Millier 

102 hecto h Centaine 

101 déca da Dizaine 

100 - - Unité 

10-1 déci d Dixième 

10-2 centi c Centième 

10-3 milli m Millième 

10-6 micro µ Millionième 

10-9 nano n Milliardième 

10-12 pico p Billionième 
 

ò, É alpha ô, ö iota õ, ê, ú rhô 
ù, û bêta ü, † kappa °, ä sigma 

¢, £ gamma §, � lambda •, ¶ tau 
6, ß delta ®, © mu ™, ´ upsilon 
¨, ≠, Æ epsilon Ø, ∞ nu ±,≤, ≥ phi 

¥, µ zeta ∂, ∑ xi ∏, π chi 
∫, è êta ª, º omicron Ω,æ psi 
ø, ¿, ¡ thêta ¬, √ pi ƒ,≈ oméga 

∇ nabla 
 

Conversion de litre en m³ : 1 m³ correspond à 1 000 l  
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